
MEMORY-AUGMENTED GENERATIVE ADVERSARIAL
TRANSFORMERS

Stephan Raaijmakers1,2, Roos Bakker2, Anita Cremers3, Roy de Kleijn4, Tom Kouwenhoven5, and Tessa
Verhoef5

1Leiden University Centre for Linguistics (LUCL)
2TNO, The Netherlands

3University of Applied Sciences, Utrecht
4Institute of Psychology, Leiden University

5Leiden Institute of Advanced Computer Science (LIACS)

ABSTRACT

Conversational AI systems that rely on Large Language Models, like Transformers, have difficulty
interweaving external data (like facts) with the language they generate. Vanilla Transformer architec-
tures are not designed for answering factual questions with high accuracy. This paper investigates
a possible route for addressing this problem. We propose to extend the standard Transformer ar-
chitecture with an additional memory bank holding extra information (such as facts drawn from a
knowledge base), and an extra attention layer for addressing this memory. We add this augmented
memory to a Generative Adversarial Network-inspired Transformer architecture. This setup allows
for implementing arbitrary felicity conditions on the generated language of the Transformer. We
first demonstrate how this machinery can be deployed for handling factual questions in goal-oriented
dialogues. Secondly, we demonstrate that our approach can be useful for applications like style
adaptation as well: the adaptation of utterances according to certain stylistic (external) constraints,
like social properties of human interlocutors in dialogues.

1 Introduction

Transformers ([1]) are capable of producing natural, well-formed language with high degrees of fluency. They are
responsible for the latest commercial and open source large language models (LLMs) like BLOOM ([2]) and the
GPT-models powering ChatGPT. Transformer architectures produce such language models either through a full encoder-
decoder combination (e.g. T5, [3]), just the encoder (BERT, [4]) or the decoder (e.g. the GPT models, [5]). In general,
probabilistic language models decompose the probability of word sequences w1, . . . , wn into a product of conditional
probabilities, estimated from raw textual data:

P (wt | w1 . . . wt−1) =

n∏
t=1

P (wt | w<t) (1)

The size of neural network-driven Large Language Models is determined by the amount of training data, the amount
of model parameters, and the amount of GPU flops for training the models. LLMs treat words as points in a high-
dimensional vector space (encoding) and complete (encoded) word sequences with generated, subsequent words
(decoding). Such probabilistic neural models can be summarized succinctly for a left-to-right situation (generating
words on the basis of left context) as

P (wt | w1 . . . wt−1) = exp (Emb⊤wt
fθ(w1 . . . wt−1)) (2)

with Emb⊤wt
the embedding of token wt, and fθ(·) a parameterized function that, based on the learned parameter

settings θ of the neural network architecture used, encodes the preceding word sequence w1 . . . wt−1 into a combined
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vector representation. A more general form is

P (wt | w1 . . . wt−1) =

n∏
t=1

Pθ(wt | w<t) (3)

LLMs minimize during training the negative log-likelihood over a training corpus (a collection of documents D, D[d]
being the d-th document in D, and |D[d]| its document length in terms of tokens):

L(D) = −
|D|∑
d=1

|D[d]|∑
t=1

log pθ(w
D[d]
t | wD[d]

<t ). (4)

In conversational AI, and specifically in goal-oriented dialogues, additional conditions on generated utterances typically
apply. In such dialogues, conversational agents need to respond to users with appropriate utterances that are not only
linguistically correct but also provide correct information, and are stylistically acceptable in the current dialogue context
(e.g. [6]). Unfortunately, vanilla Transformers are not equipped for such tasks. Their purpose is to generate language
from language, conditioned on attention patterns (self-attention and intra-attention). A Transformer typically learns
to convert input sequences into output sequences, encoding their input with attention values, and generating output
from the encoded representations. Standard Transformers cannot readily produce factual information in response to
user input, e.g. for answering questions ([7]): all knowledge they contain is derived from their underlying language
model. In addition, they appear to be prone to lexical hallucinations ([8]), generating random output words based
on small, unexpected perturbations in their input data. These innate deficiencies make them unsuitable for accurate
question answering. This paper addresses the question of how to improve this situation for conversational systems based
on Transformer-produced LLMs ("conversational LLMs"). Augmenting the memory of Transformers with external
(e.g. factual) data is a well-known tactic (see Section 3 below). We argue for adding another control facility to such
memory-augmented Transformers: a generative adversarial training tactic that allows for exerting additional conditions
(such as factual compliance) on the utterances generated by Transformers. We will first discuss such an adversarial
control mechanism, and then present the combination of that mechanism with a memory augmented Transformer
architecture.

2 Generative Adversarial Transformers

A generative adversarial network (GAN, [9]) is an implementation of a zero-sum game, where two parties interact with
each other: a discriminator and a generator. In zero-sum games, the loss of one party benefits the other party. Zero-sum
games are commonly expressed in terms of a value function V (D,G) which, for a discriminator D and a generator G,
expresses the quantities to be minimized and maximized during training. In particular, the discriminator D seeks to
maximize the objective of discriminating between a reference data distribution and the ’fake’ data generated by the
generator, which initially will be noisy, but will gradually start approximating the true data distribution. The generator
attempts to minimize the dispersion of its own data distribution and the reference data. In this context, zero-sum implies
that the amount to which the discriminator discerns successfully between fake and real data points translates to a penalty
for the generator: the better the discriminator performance (i.e. the lower its error when discriminating between true
and faked data), the more severe the penalty for the generator: it must work harder to mislead the discriminator, and
thereby increase the discriminator error. Conditional GANs are a specific type of networks that are conditioned on
desired output labels ([10]). We propose in this paper a type of conditional Generative Adversarial Transformer (GAT).
Both generator and discriminator are implemented as Transformers, trained through the adversarial zero-sum game
of GANs. The generator can be conditioned on additional loss functions LG and external data M. The GAT has the
following constrained value function V :

min
D

max
G

V (D,G) = Ex∼p(x [log(D(x,mx)] + Ez∼pz(z) [log(1−D(G(z,mz, λ
∗))] (5)

with px the true data distribution, pz the noisy distribution from the generator, and

λ∗ = λn
1 ∈ LG = λ1(·) + . . .+ λn(·). (6)

with the default that λ∗ is a zero function f(·) = 0.

D and G are parameterized functions (mx the external data associated with data point x):

D(x,mx; θD)

G(x,mx, λ
∗; θG)

(7)
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The expected values are defined as:

Ex∼p(x) [log(D(x,mx)] =

∫
log(D(x,mx))p(x)dx (8)

and
Ez∼pz(z) [log(1−D(G(z,mz, λ

∗)),mz)] =

∫
log(1−D(G(z,mz, λ

∗),mz))p(z)dz (9)

This expresses that, for a given data point x, both the generator G and the discriminator D take the corresponding
external data mx into account, and that the generator may be subjected to additive, generator-specific loss functions.
According to this design, a GAT can be conditioned in three manners: (1) through the external data that accompanies
the normal stream of input data; (2) through additional felicity conditions imposed on the generator; (3) by combining
(1) and (2). This opens up possibilities for checking factual adherence of these models. Practically, we implement such
conditions as loss functions on the generator, and we add their results through summation to the default Transformer
loss function scores (sparse categorical cross entropy, measuring overlap between predicted utterance and ground truth
utterance). In terms of language modeling, this means we redefine negative log-likelihood as follows:

L(D) = −
|D|∑
d=1

|D[d]|∑
t=1

log pθ(w
D[d]
t | wD[d]

<t ,md,LG). (10)

with md the external data linked to "document" d (a training data item).

Next, we need to make the extra, external data available to the conditional Generative Adversarial Transformer through
memory-augmentation.

2.1 Memory-augmented Conditional Generative Adversarial Transformers

We equip the GAT generator and discriminator with an additional attention layer addressing a separate stream of external
data, creating a memory-augmented Transformer. The external data is aligned with the original input data on an item-by-
item basis, and can be optionally empty or even address data that is part of the original input, as a means of emphasis.
Specifically, in both encoder and decoder components of the Transformer, we add an additional multihead attention
layer for external data. Every head in this layer computes attention using the standard Transformer Query/Key/Value
mechanism ([1]). For handling external data, we let Query=inputs, Key=external data and Value=external data. Attention
for both original input data and external data is summed in both the encoder and decoder blocks of the Transformer,
similar to the approach of [11]. Figure 1 illustrates the encoder and decoder blocks of the memory-augmented
Transformer. The controlling Generative Adversarial Transformer is illustrated in Figure 2

As discussed, the generators in GANs generate initially noisy data that becomes scrutinized or rewarded by the
discriminators. The worse the discriminator discerns the generated data from real data, the higher the reward for the
generator. In the case of text-based Transformers, the output of the generators, per training epoch, is treated as noisy
data, all of which is labeled as ’fake’. The generator can be conditioned with arbitrary loss functions, measuring
the quality of the generated answers given the corresponding questions. These loss functions are supplementary to
the normal loss function imposed on the Transformer, which measures the dispersion of the generated answers with
respect to the ground truth training data using sparse categorical entropy over the integer-encoded words in inputs and
predictions. In subsection 4.2, we outline a sample loss function used in our experiments.

3 Related work

There are different perspectives on conditioning conversational Large Language Models on external data. Our work can
be related to - and contrasted with- five major types of approaches.

Black-box LLMs and fine-tuning One obvious bottleneck for fine-tuning and memory augmentation approaches to
conditional language generation is the necessity to invest in (re)training LLMs. Recent approaches like [12] attempt
to circumvent this restriction by connecting pre-trained large language models ("black-box LLMs") to external data
sources directly. This differs from our approach, where we effectively train LLMs from the ground up. Alternatively,
many approaches focus on fine-tuning pre-trained Large Language Models for conditional conversation generation.
An early example is [11], who propose to combine conversational and non-conversational, factual data with Memory
Networks through multi-task learning, where conversational and factual text generations tasks are learned in conjunction.
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Figure 1: The memory-augmented Transformer with its encoder (left block) and decoder (right block).

While their approach differs from the approach we outline in this paper from an architectural point of view, it is related
in combining encoded factual and non-factual information into one representation, as we will point out below.

Memory and retrieval augmentation Adding external memory banks to LLMs is known as memory augmentation.
In [13], Large Language Models are interpolated with k-nearest neighbor (k-NN) models, using textual similarity of
current LLM context with retrieved context(and their completions) for generating interpolated completions. Since k-NN
models are memory-based models that store exceptions very well ([14], nearest neighbor LLMs can handle rare patterns
and factual information. In a similar vein, memory augmentation approaches aim to augment the memory capacities of
the neural architectures that produce Large Language Models, by adding extra memory facilities that address external
information, like facts from a knowledge base, e.g. [15], where Large Language Models are conditioned on structured
external information organized in knowledge graphs. Retrieval-Augmented Generation (RAG, [16]) aims to connect
an LLM to external data sources, by mapping user queries or prompts to vectorized representations used as queries
for external data sources (like databases). Retrieval results are handled by the LLM to formulate replies that depend
on both the user prompt data and the retrieval result. Unlike RAG, we attempt to internalize such external knowledge
in the LLM itself. In [17], a separate entity memory ("Entities as Experts") is linked to a Transformer model, that is
used for filling in contextual entity mentionings with learned entity embeddings, using contextual similarity matching.
Our approach omits multi-step involvement of entity data - we do not explicitly encode separate entity information,
but rather force Transformers to focus on external information (not restricted to entities) through the native attention
mechanism of Transformers. In [18], the Entities as Experts approach is extended with additional knowledge base
facts pertaining to (again) entities. The work of [19] augments the Transformer memory with short term token (i.e.
lexical) memory, long term token memory and external token memory. Their approach differs from ours in the type of
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Figure 2: The conditional Generative Adversarial Transformer (GAT), built up from two memory-augmented Trans-
formers. The generator is equipped with additional loss functions conditioning its output. Notice how the generator
receives summed losses from the additional loss functions ("Conditions") and the discriminator ("D-loss").

memory data (lexical tokens), and the absence of additional constraint facilities. In contrast, our approach is agnostic to
the type of information in the external data memory bank, and allows for arbitrary constraints on outputs. In [20], a
separate entity-based external model is proposed, the entirety to which the Transformer pays attention during utterance
generation. Our work relates to this approach, in proposing a memory bank for external information, but is more general
in allowing for any type of information, including emphasizing existing, internal information from the original input
memory, and in allowing for the expression of felicity conditions on the Transformer that can address the extra data
memory and the produced responses. Finally, the recent models of [21] propose verbal feedback memory buffers for
self-reflection by LLMs.

Prompting [22] and [23] propose to leverage prompting (or in-context learning, [24, 25]) facilities of current Large
Language Models: inserting factual information into a short-term memory buffer of an existing Large Language Model,
forcing it to take such information in account when generating new utterances. Our work differs from this work in not
explicitly mixing input data with controlling external data, but instead keeping external apart in a separate memory
buffer, and by allowing for explicit conditions on outputs through the adversarial organization of the Transformer model.

Generative Adversarial Transformers. Finally, in the image analysis field, Generative Adversarial Transformer
models have been proposed, e.g. by [26]. In [27], a Generative Adversarial Transformer architecture has been proposed
that exclusively focuses on textual style transfer. Our work can be seen as a generalization of this idea, in being agnostic
to the task at hand.

4 Experiments

In a number of experiments we assess the benefits of the external data memory and conditioning the generator of the
adversarial Transformers. First, we describe our data, and subsequently we outline our experimental setup.

4.1 Data

In our experiments, we use two datasets:

• The data from ([28]), referred to below as CAR. This is multi-turn conversational data gathered through a
Wizard-of-Oz experiment for the automotive domain, describing goal-oriented dialogues between humans and
a car navigation system.
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• The Personalized bAbI data ([29]). This dataset builds upon the well-known bAbI dialogue datasets ([30],
and consists of goal-oriented (restaurant table booking) dialogues extended with gender and age information
about the human interlocutor. The overarching task is to train dialogue systems to adapt their style to human
interlocutor characteristics.

These datasets are described in more detail below.

Factual Question-Answering: CAR

The CAR data contains interactions of humans with a (fictive, i.e. human-imitated) car voice assistant. Drivers can
ask the assistant about weather conditions, nearby points of interests ("poi’s"), and express navigation instructions.
The data is grounded with a knowledge base containing destinations, addresses, weather information and points of
interest (POIs). It consists of 3,031 dialogues in three different domain types, all dealing with in-car personal assistants.
Uniquely sorting the preprocessed data for the three stages resulted in 5,958 single turn cases for stage 1, 3,864 single
turn cases for stage 2, and 3,041 single turn cases for stage 3. Examples are listed in Table 1.

Question/Instruction Response
Where’s the nearest parking garage? The nearest parking garage is Dish Parking at 550

Alester Ave. Would you like directions there?

Yes, please set directions via a route that avoids all
heavy traffic if possible.

It looks like there is a road block being reported on
the route but I will still find the quickest route to
550 Alester Ave.

Thanks so much for your help. You’re very welcome!

Show me the closest location where i can get chi-
nese food.

The closest chinese restaurant is PF Changs, lo-
cated 5 miles away.

Table 1: Examples from the data from [28].

In order to obtain fine-grained control over external data for answer generation, we carve up this dialogue process into
three stages:

Stage 1: Slot detection. Using the knowledge base (KB) information associated with the dialogues in this dataset, we
reverse engineer a slot-tagged version of the dataset, mapping words and phrases to the associated slot names
in the KB information that accompanies each turn in a dialogue. We train an adversarial Transformer on the
detection of entity slots (names, locations, distances, etc.) from raw data. This Transformer has an empty
external data memory bank, since external data do not play a role here. The output of this stage consists of
entity-attenuated utterances (Table 1)1.

Stage 2: Slot mapping. We train a memory-augmented adversarial Transformer on mapping entity-attenuated source
utterances (questions, instructions) to entity-attenuated target utterances (responses). In this stage, external
data consists of the entity slots specified in the source utterances, which serves to emphasize this information
for response generation.

Stage 3: Slot filling. We train a memory-augmented adversarial Transformer on mapping the entity-attenuated responses
from stage 2 to instantiated utterances, with actual values substituted for slot names. In this stage, external
data consists of factual database values.

This setup is illustrated in Figure 3. Sample processed data from the CAR dataset is listed in Table 2.

In order to produce the external data for stage 2 and 3 (which merges this data with the template generated by stage 2),
stage 1 delivers crucial information that needs to be converted into a database query. By aligning the entities assigned
to words in stage 0 (in the example in Table 1: fastest 7→ poidistance; parking garage 7→ poitype), we can construct a
database query with restrictions, to be resolved against a knowledge base. For instance, for the listed example, such a

1The reverse data engineering process was not fault-proof and led in a number of cases to ill-formed data (missing entities, or
mistagged entities).
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Figure 3: Setup for factual question answering. Three separate memory-augmented Transformers, each trained with
their own conditional GAT, address different stages in the process.

Stage 1: slot detection Stage 2: slot mapping Stage 3: slot filling

Input: can you find me the fastest
route to a parking garage

Input: can you find me the poidis-
tance route to a poitype

Input: poi is poidistance away

External data: none External data: poitype poidistance External data: poitype:parking
garage poi:webster garage poidis-
tance:4 miles

Output: can you find me the poidis-
tance route to a poitype

Output: poi is poidistance away Output: webster garage is 4 miles
away

Table 2: Examples from our attenuated version of the data from [28], across the three stages.

query submitted to a retrieval engine like Elasticsearch2 could look like a GET operation (Figure 4). The result of this

GET /_search
{

"query": {
"filter": [

{ "poitype": "parking garage" },
{ "poidistance": { "fastest": { "current-location": "..." }}}

]
}

}

Figure 4: Sample Elastic query.

query should be the external data for stage 2, in our example3

• poitype:parking garage, poi:webster garage poidistance:4 miles.

The external data for stage 2 is essentially a repetition of the extracted slots in the input buffer, produced by stage 1.
By representing these slots without context, explicitly in a separate memory buffer and subjecting them to separate
attention, we instruct the Transformer to focus on this information during response generation. In summary, for the
CAR data we split up dialogue utterance generation into three separate generative steps: an initial slot extraction step,
generating attenuated utterances with entities (like dates, destinations, locations) replaced by slot names; a subsequent
answer generation step that maps slot-attenuated utterances (questions, commands) to slot-attenuated responses, and a

2https://www.elastic.co
3In the CAR data we used, such queries have been resolved already.
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final step that fills in attenuated slots with values coming from a knowledge base. Under this perspective –which can
trivially be generalized to other datasets– question-answering becomes a slot extraction and slot filling problem. In our
current experiments, we did not train the three Conditional GAT models in an end-to-end fashion, they were trained
independently.

Style adaptation: Personalized bAbI

For the Personalized bAbI data, we focus on different external data: the gender and age information associated with the
human interlocutor. The data contains 5 tasks, in different sizes (large and small). We used the dataset for task 3, a
small dataset comprising 1,369 single question/answer turns 4.The human-provided initial question and the age/gender
information about the interlocutor serve as input for the answer generation process. Typically, age and gender are
reflected in the style of the response (higher age leading to more formal, polite answers, for instance). Some examples
are listed in Table 3. This data is processed in one step: our Transformer maps input and external data directly to output.

Question External data Answer

bombay please female elderly would you mind telling me how
many guests shall be at your table

bombay please female young how many are you

bombay please male middle-aged ok sir i’m looking for options for
you

can you book a table female elderly thank you madam i shall start the
reservation now

Table 3: Examples from the Personalized bAbI data from [29].

4.2 Experimental conditions

We carried out three experiments for our two datasets, listed in Table 4.

Experiment Data Description

EXP1 CAR data For stages 1 and 3 for the CAR setup (Table 2), this experiment verifies
the linguistic capability of the memory-augmented Transformers. Stage
1 does not use external data, and stage 3 uses external data per definition,
to fill in database values in slots detected by stage 1.

EXP2 CAR data This experiment investigates the use of external data for stage 2 of the
CAR setup and the benefits of the POI loss function as a condition on
the generator. Total loss is computed by summing standard loss and POI
loss, and performance is compared to memory-augmented Transformers
with emptied external data.

EXP3 Personalized bAbI data The benefit of accessing gender and age-related external data. Perfor-
mance is compared to memory-augmented Transformers with emptied
external data. No specific loss function is imposed on the generator.

Table 4: Our experiments.

As mentioned, for the CAR dataset, stage 1 does not use external data, and stage 3 uses external data per definition for
filling in slots with values. We therefore only report on the effect of external data or no external data for stage 2 in our

4See https://github.com/chaitjo/personalized-dialog for further details of this data.
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experiments. Notice that the three models for stages 1-3 were not trained end-to-end; they were trained independently
(see Section 6). Additionally, we investigate the effect of a loss function that specifically addresses the overlap in
external data between query and generated answer: the point of interest (POI) loss function (λpoi), which we define as a
function based on recall and precision for POI slot names:

Precisionpoi = TPpoi

TPpoi+FPpoi

Recallpoi = TPpoi

TPpoi+FNpoi

F poi
1 = 2 · PrecisionpoiRecallpoi

Precisionpoi+Recallpoi

λpoi = 1− F poi
1

(11)

This loss function measures the amount to which POI slot names in the extra data memory appear in the generated
predictions. It only checks the presence of slot names, not specific values.

As for the Personalized bAbI data, we test for the benefit of exposing Transformers to the gender and age-related
external data (see Table 3).

In our experiments, we uniformly split off a randomized, fixed (over runs) portion of 20% of training data for testing
purposes and trained on the remaining 80% of data5. All Transformers were trained for 1,000 epochs on a single Tesla
T4 16GB GPU. We measure results with the sacrebleu ([31]) toolkit6. This toolkit computes a cumulative sentence
BLEU scores based on word 4-grams (BLEU-4), and additionally computes chrF2 (a character n-gram-based F-score
for the match between two utterances, [32]) and TER (Translation Edit Error, [33]), which measures the amount of edit
steps needed to convert a machine-generated utterance into a reference utterance (lower TER is better). The sacrebleu
toolkit also compares results across multiple conditions, with one of them being a baseline, to a reference dataset and
reports eventual statistical significance. Additionally, we measure outcomes with the following set of metrics, using the
nlg-eval toolkit (see [34] for details):

• METEOR: computes an F-score based on a fuzzy alignment of unigrams between source and target utterances,
and has been shown to align better with human judgment ([35]).

• ROUGE-L: computes an F-score addressing the longest common subsequence between source and target
utterances.

• Embedding similarities: SkipThoughtsCosineSimilarity (computes cosine similarity defined on skip-thought
sentence embeddings, see [36]), EmbeddingAverageCosineSimilarity (cosine similarity based on averaged
word embeddings), VectorExtremaCosineSimilarity (computes cosine similarity between sentence embeddings
using extreme values of the constituting word embeddings).

• GreedyMatchingScore: computes cosine similarity based on different pairings of the words in source and
target sentences.

4.3 Results

Below we present the results for our three experiments7. Note that BLEU scores in the range of 50-60 are generally
seen as high (see e.g. [37]).

EXP1 - Slot detection and filling for the CAR data. Tables 5 and 6 list results of stages 1 (slot detection) and 3 (slot
filling) for the CAR dataset.

5The Transformers parameters were: batch size=8, embedding dimension for input (words) and external data=256, number of
attention heads=8.

6We ran sacrebleu with the signature -l en-en -m bleu chrf ter –chrf-word-order 4 -b -w 4 –paired-bs.
7The Appendix lists sample responses for the CAR and Personalized bAbI tasks.
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System BLEU-4 (µ ± 95%
CI)

chrF2++++ (µ ±95%
CI)

TER (µ ± 95% CI)

Stage 1 81.7 (81.6311 ±
1.8414)

86.5 (86.4899 ±
1.3697)

12.5 (12.5455 ±
1.3463)

Stage 3 52.0 (52.0076 ±
2.2496)

61.6 (61.5831 ±
1.7601)

32.5 (32.5215 ±
1.7969)

Table 5: EXP1: the sacrebleu results produced for the CAR data for stages 1 and 3.

Metric Stage 1 Stage 3

BLEU-1 90.5 71.6
BLEU-2 87.5 64.4
BLEU-3 84.8 58.2
BLUE-4 82.1 52.5

METEOR 56.4 36.6
ROUGE-L 92.7 75

SkipThoughtsCosineSimilarity 91.9 78.3
EmbeddingAverageCosineSimilarity 97.9 94.2

VectorExtremaCosineSimilarity 94.9 75.2
GreedyMatchingScore 97.9 88.4

Table 6: EXP1: metric results produced by nlg-eval for the CAR data for stages 1 (slot extraction) and stage 3 (slot
filling).

While displaying relatively strong BLEU (and other) scores, stage 3 results show room for improvement in terms of
factual adherence. Frequently, we witnessed factual hallucinations like:

Input: the poidistance is poi poidistance away at poiaddress
External data: poidistance:3 miles poiaddress:9981 archuleta ave poitype:coffee or tea place poitrafficinfo:moderate
traffic poi:peets coffee
Ground truth: the closest is peets coffee 3 miles away at 9981 archuleta ave
Prediction: the nearest is peets coffee 1 miles away at 9981 archuleta ave

It is clear we need to impose additional value-checking loss functions here, which should come as no surprise, since the
POI loss function only checks for the restoration of slot names in the generated output, not their values.

EXP2 - Slot mapping for the CAR data. In Table 7, the sacrebleu scores for stage 2 for the CAR dataset are
displayed. First, we compare using external data with the standard loss to using external data where POI loss is added
to standard loss. Second, we compare the basic setting of using no external data and just the standard loss to using
external data and POI loss added to standard loss. Third, we compare the use of external data plus the combined POI
and standard loss to not using external data but still using the combined POI loss and standard loss. Here, the POI loss
is based on the overlap of input buffer POIs with predicted POIs in the generated utterances. This latter comparison
specifically assesses the importance of the memory buffer.
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System BLEU-4 (µ ± 95%
CI)

chrF2++++ (µ ±95%
CI)

TER (µ ± 95% CI)

External data, standard loss 9.9 (9.9140 ± 1.0474) 29.9 (29.8409 ±
1.2403)

90.1 (90.1385 ±
2.3366)

External data, POI loss+standard loss 11.2 (11.1627 ±
1.1571) (p = 0.0230)*

31.2 (31.1684 ±
1.2127) (p = 0.0090)*

90.8 (90.9146 ±
2.7216) (p = 0.2208)

No external data, standard loss 10.3 (10.2779 ±
1.1844)

29.9 (29.8587 ±
1.2475)

89.2 (89.2030 ±
2.4749)

External data, POI loss+standard loss 11.2 (11.1627 ±
1.1571) (p = 0.0819)

31.2 (31.1684 ±
1.2127) (p = 0.0140)*

90.8 (90.9146 ±
2.7216) (p = 0.1169)

External data, POI loss+standard loss 11.2 (11.1627 ±
1.1571)

31.2 (31.1684 ±
1.2127)

90.8 (90.9146 ±
2.7216)

No external data, POI loss+standard loss 9.3 (9.2560 ± 1.0709)
(p = 0.0040)*

29.2 (29.1112 ±
1.2121) (p = 0.0020)*

89.4 (89.4502 ±
2.2439) (p = 0.1299)

Table 7: EXP2: sacrebleu results for the CAR data for stage 2, comparing the standard Transformer loss function
with the POI loss function constraining the generator. Boldface and * indicate significantly better results according to
sacrebleu.

Table 8 displays the nlg-eval scores for the conditions of Table 7.

Metric External data,
standard loss

External data,
POI loss +
standard loss

No external
data, standard
loss

No external
data, POI loss
+ standard
loss

BLEU-1 34.3 36.0 34.3 32.3
BLEU-2 22.5 23.8 22.4 20.7
BLEU-3 14.7 15.9 14.9 13.8
BLEU-4 9.9 11.2 10.3 9.3

METEOR 17.5 18.2 17.5 16.6
ROUGE-L 32.6 32.9 32.9 31.0

SkipThoughtsCosineSimilarity 53.6 54.2 54.0 52.7
EmbeddingAverageCosineSimilarity 74.3 74.4 74.3 71.4

VectorExtremaCosineSimilarity 55.8 55.9 55.5 52.9
GreedyMatchingScore 76.6 78.0 77.2 76.0

Table 8: EXP2: metric results produced by nlg-eval for the CAR data for stage 2, comparing the standard Transformer
loss function with the POI loss function constraining the generator. Boldface indicates best results.

According to sacrebleu, using external data with the POI loss function combined with standard loss in stage 2 is
significantly better than using external data with just the standard loss function. Further, using the memory buffer in
conjunction with POI loss and standard loss significantly outperforms using no external data and POI loss combined
with standard loss. This confirms the benefit of the extra memory buffer. The results for using no external data, POI
loss + standard loss are on a par with using no external data with just the standard loss.

While BLEU scores decrease significantly for stage 2 compared to stages 1 and 3, strict string similarity appears to be
not a suitable metric for evaluating this stage. Recall that in stage 2, answer patterns are produced for the attenuated
input patterns that are produced by stage 1. A manual inspection for accuracy revealed that the stage 2 patterns produced
by Experiment 1 displayed an answer accuracy of 77.7% with accuracy meaning here: leading to a correct answer to
the original question, i.e. having the correct slots, but not necessarily matching formulations. Some examples are:

Input: when is poitypetennis activity
External data: poiparty poidate poievent poiagenda poitime
Ground truth: you have a poievent activity on poidate at poitime
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Prediction:your poievent activity is on poidate at poitime

Input:: who is going
External data: poiparty poidate poievent poiagenda poitime
Ground truth: poiparty will be at the poievent activity on poidate at poitime
Prediction: poiparty will be attending your poievent activity on poidate at poitime

Input: find some places downtown where i can poitype
External data: poiaddress poidistance poitype poi
Ground truth: the poi is poidistance away
Prediction: you will be able to poitype located at poiaddress it is poidistance away

EXP3 - Personalized bAbI. Table 9 lists the BLEU-4 results for the Personalized bAbI task. While this dataset is small
and has repetitive answers, using external data yields significantly better performance. Table 10 lists the metric results.

System BLEU-4 (µ ± 95% CI) chrF2++++ (µ ± 95% CI) TER (µ ± 95% CI)

External data 61.1 (60.9185 ± 5.7854) 67.7 (67.6811 ± 5.0516) 37.4 (37.3672 ± 5.6361)

No external data 8.8 (8.7159 ± 3.1313) (p
= 0.0010)*

20.8 (20.7812 ± 2.6477)
(p = 0.0010)*

97.5 (97.5206 ± 4.4556)
(p = 0.0010)*

Table 9: EXP3: the sacrebleu results for the Personalized bAbI data. Boldface and * indicate significantly better
results according to sacrebleu.

Metric External data No external data

BLEU-1 67.2 21.8
BLEU-2 64.5 14.6
BLEU-3 62.8 10.7
BLEU-4 61.1 8.8

METEOR 39.5 11.1
ROUGE-L 65.6 22.5

SkipThoughtsCosineSimilarity 78.6 46.8
EmbeddingAverageCosineSimilarity 89.0 80.1

VectorExtremaCosineSimilarity 73.6 50.0
GreedyMatchingScore 82.6 63.4

Table 10: EXP3: metric results produced by nlg-eval for the Personalized bAbI data. Boldface indicates best results.

5 Discussion

In our experiments, we have found initial indications that informing adversarially trained Transformer models with
additional external data and constrained generators can be helpful. Using just external data with the standard loss
function appears not to outperform the standard setting where no external data is used. However, we found that using
external data with a tailored loss function (POI loss) compared to the standard loss function improves stage 2 of the
CAR data experiment. Using POI loss as a condition on the Transformer generator also produces better absolute results
across all metrics minus 1 for stage 2 of the CAR data. The use of the extra memory buffer plus the POI loss function
outperformed using no external data and POI loss applied to the input buffer and predictions. This indicates that the
extra memory is indeed useful for this task. Our results can be interpreted as a within-system form of ablation, since we
tested for using no external data versus using external data, effectively shutting the extra memory buffer off and on. For
Stage 2 of the CAR dataset, we effectively used the extra memory buffer to emphasize the data already in the input
buffer - the buffer basically repeats that information. In stage 3 for the CAR dataset, it is clear that the external data
(which, in that stage, consists of non-repeated database values) is crucial for filling in the slots names with specific
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values. For the Personalized bAbI dataset, the situation is actually similar: the external data is crucial for setting the
right tone of voice, which is dependent on the age and gender of the human interlocutor. Such data is not redundantly
available in the input buffer. The Personalized bAbI task involves only the extra conditioning of answer generation on
two external variables (the gender and age of the human interlocutor). This may explain the effectiveness of external
data we observed for this dataset.

Limitations of our research consist of a partial assessment of the use of additional loss functions, and the relatively
small sample size for our training and test datasets. Also, for practical (computing) reasons, we did not perform a
systematic grid search over the various Transformer parameters, including the number of training epochs. We have not
addressed the full potential of conditioning the adversarial aspect of our approach yet. For instance, coding aspects
of past utterances in dialogues (like sentiment, style, or topic) may lead to better regulation of future utterances, in
conjunction to the general in-context learning capabilities of large language models. Finally, we are aware that our
evaluation metrics address only string and semantic overlap between ground truth and predicted data. Follow-up
research should extend these metrics with more fine-grained evaluation metrics that target factual adherence to external
data.

6 Future work

As for future work, we see a number of potential topics:

End-to-end training In our current setup for factual question-answering, we have trained three memory-augmented
Transformers in isolation. An end-to end schema would imply joint optimization with potential performance benefits,
and will be investigated in our follow-up research.

Quality improvement for factual adherence Additional loss functions will need to be applied in order to tighten the
adherence of the GAT models to factual data, as witnessed by the frequent hallucination in stage 3 for the CAR dataset.
Factual evaluation metrics will be used for a better estimation of factual adherence.

Structured external data Structured external data in the form of knowledge graphs or ontologies can improve the
answers in stage 2 and 3 for the CAR dataset. Previous work has shown the value of using knowledge graphs as an
external knowledge base to question answering with language models [38, 39]. The CAR dataset currently contains
a knowledge base per scenario, structured in a triple format [28]. These knowledge bases are manually crafted per
scenario and have limited information; useful in a limited experiment setting but not scalable for real-life applications.
Large graph databases such as Neo4j [40] provide a large factbase and allow for discovery of patterns and flexible
extensions, as [41] demonstrate for the medical domain. For follow-up research, it would be interesting to explore the
benefits of different types of knowledge graphs as external fact databases.

Comparison with Retrieval-Augmented Generation (RAG) models In future work, we intend to compare the GAT
architecture to RAG architectures, on shared datasets.

Reinforcement learning from explicit human feedback Reinforcement learning from human feedback (RLHF)
[42, 5] can potentially further condition the GAT by providing a mechanism for improving performance based on
human-generated rewards or evaluations. This presupposes the detection of appropriate reward signals that capture
the desired behavior of the system. For example, in the case of factual question answering, the reward signal could be
based on the accuracy of the answer provided by the system compared to a human-provided answer, but does not have
to involve a direct human-in-the-loop. A reward model can be trained using human labelers, which in turn can be used
to provide a reward signal, making the process time- and cost-efficient. This technique can be applied to all three stages
of the dialogue process described above. Sometimes, based on new evidence or research methods, factual knowledge
can change. By incorporating RLHF, the memory can be updated based on the reward policy. This allows the system
to dynamically adapt its memory content and attention focus based on the feedback received through reinforcement
learning.

Reinforcement learning from implicit human feedback As human-system dialogues become more natural, human
feedback to system output is better reflecting the grounding process that takes place in human-human conversations.
This means that during a conversation partners are continuously making sure their utterances are mutually understood
([43, 44, 45]). After the presentation phase, in which the first partner presents an utterance, the acceptance phase
follows, in which the second partner provides evidence of understanding. Grounding is often achieved through the
use of back-channel responses, such as “uh huh” or “mm” ([46]). However, the acceptance phase may take several
turns, including sequences of clarification requests and repairs. Once both phases are complete, it will be common
ground between both partners that the second partner has understood what the first partner meant. In addition, this
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whole process may involve dialog acts indicating the second partner is processing the utterance of the first partner
(autofeedback), or the partner needs some time to formulate his contribution the dialog (time management). Problems
with understanding or formulating may also become apparent in delays in responding ([47]). The response to the
grounded utterance of the first partner depends on the dialog act of this utterance and the corresponding expected dialog
act of the second partner. These expected pairs of dialog acts are called adjacency pairs, of which typical examples
are: question–answer, greeting–greeting and offer–acceptance ([48]). The response may turn out to adhere to this
expectation (e.g., offer-acceptance), contradict it (e.g., offer–refusal) or leave it undecided (e.g. offer-hesitation). Both
length and nature of the process of achieving common ground, occurrence of autofeedback and time management dialog
acts or delays in answering, and the adherence of the ultimate response of the human to the system’s dialog act may
provide valuable input to reinforcement learning.

The exact interplay of memory augmentation and feedback will be an interesting new research topic.

Fine-tuning Our experiments started ab ovo with a proprietary dataset and an untrained Transformer. In future work,
we will attempt to reconcile our approach with pre-trained large language models (base or foundation models) by
interpreting our memory augmentation as a form of fine-tuning.

7 Conclusion

This paper has presented a new type of memory-augmented Transformers: adversarially trained generative Transformers
that can be conditioned on arbitrary loss functions imposed on their generators. We have demonstrated the efficacy
of an adversarial training scheme for textual Transformers, and found indications that adding external information
through memory augmentation leads to performance improvement of our models, for two divergent tasks: factual
question-answering and style adaptation. Our approach is completely agnostic with respect to the type of external data,
and may lead to insights which types of external data are beneficiary for a given task at hand. For handling factual
question-answering, we outlined an approach based on attenuation and de-attenuation (slot detection, slot mapping, and
slot filling), using memory augmentation for emphasizing certain parts of the input data. While we did not arrive at
high quality factual adherence in the slot filling stage of these latter experiments yet, we hypothesize that additional
value-checking loss functions will be effective for raising performance. Memory augmentation with truly external data
(i.e. data that is not explicitly repeated in the input buffer) appeared useful for a small scale style adaptation dataset.
While our results are based on limited data and therefore should not be taken as conclusive, we feel encouraged to
further explore the proposed approach across different tasks and on larger datasets.
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