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Abstract
How people learn and produce sequential actions (e.g., making
coffee) has been the subject of intense empirical and theoret-
ical scrutiny, for it covers most human activities. One useful
distinction is between stimulus-based control, in which action
selection is driven largely by the environment, and plan-based
control, which assumes learning of structured sequences of ac-
tions and effects. Task demands and instructions can modulate
which control mode is used, as well as participants’ individ-
ual abilities and inclinations. Here we investigate two mouse-
based sequence learning tasks, with one key difference: in the
cued task, either control mode is possible, while learning in the
reinforcement task requires plan-based control. Using mea-
sures of visuospatial working memory (VWM) capacity, locus
of control, need for structure, and IQ, we seek to identify and
explain individual differences choice of control mode and task
performance, establishing a link between VWM capacity and
performance, as well as explicit knowledge evidencing plan-
based control.
Keywords: sequential action learning; reinforcement learn-
ing; individual differences; trajectory serial response time task

Introduction
Nearly all everyday actions can be considered sequential:
from making coffee to using the bathroom, these complex
actions consist of subactions that are completed one after an-
other. Decades of research have been dedicated to uncov-
ering the mechanisms enabling us to learn and execute such
action sequences. An early theory by James (1890) argued
that elementary action units in a sequence are triggered by the
sensory effects of the preceding unit. However, Münsterberg
(1892) noted that such an associative account is insufficient to
explain sequential action because a directional element is re-
quired to successfully execute subactions in the correct order.
Instead, he argued that the learning of action sequences relies
on the acquisition of a motor program. More recently, it has
been suggested that these two approaches are not mutually
exclusive, but in fact reflect two different executive control
modes that–under specific circumstances–can be strategically
chosen (Tubau, Hommel, & López-Moliner, 2007).

Stimulus-based and plan-based control
Tubau et al. (2007) compared James’ stimulus-driven ac-
count of sequential action with the prepared reflex concept
of Hommel (2000), and referred to it as stimulus-based con-
trol. This type of executive control is characterized by the

automaticity by which stimuli are attended to. Due to the
highly automatized response to stimuli, the sequence itself is
often not learned. Instead, what is learned is a strategy of
delegating control to external stimuli (Tubau et al., 2007). In
other words, people learn how to respond quickly to incom-
ing information. Plan-based control, on the other hand, is as-
sumed to rely on action plans, which are structured sequences
of action effects (Miller, Galanter, & Pribram, 1960; Hom-
mel, 2003). In contrast to stimulus-based control, represen-
tations in plan-based control are internally generated. There
is evidence to suggest that sequence learning does not rely on
the prediction of sequences of external stimuli, but the pre-
diction of the motor action to be performed. In other words,
participants do not learn stimulus-event sequences, but in fact
learn sequences of responses. As such, it is thought that se-
quence learning involves a shift from stimulus-based control
to plan-based control, implying the generation of action plans
by which participants can predict a sequence of responses
even in the absence of stimuli (Hoffmann & Koch, 1997; Nat-
tkemper & Prinz, 1997).

Tubau et al. (2007) investigated this shift and its modula-
tors in a comprehensive study consisting of five experiments.
In a serial reaction time paradigm in which participants had
to respond to the letter X appearing on the left or right side
of the screen and responding with the appropriate hand, they
presented participants with a repeating sequence of stimuli.
In this sequence, location switches occurred four times more
often than location repetitions, but stimuli were equally often
presented to the left or right. They found that participants’
control mode was influenced by instruction type, where in-
tentional instruction (i.e. telling participants that the shown
sequence is deterministic, and is to be learned explicitly) in-
duced plan-based control. Participants’ control mode was as-
sessed by the size of the frequency effect, which should be
smaller under plan-based control. Participants who received
intentional instructions showed a smaller frequency effect,
which was attributed to the formation of an action plan. These
participants were more likely to acquire explicit knowledge of
the sequence, as they were able to verbally report the correct



sequence at the end of the experiment1.
However, plan-based control is not just a strategy that par-

ticipants employ at their own choosing–task structure and
demands have a large influence. For example, removing
stimulus-response compatibility by using symbolic stimuli
instead of spatially-compatible stimuli seems to lead to plan-
based control, as is evidenced by the elimination of the fre-
quency effect. Also, playing irrelevant sounds that hamper
symbolic encoding of the sequence prevents the successful
formation of an action plan, leaving stimulus-based control
the only viable mode of executive control (Tubau et al., 2007).
In some circumstances, stimulus-based control is not a feasi-
ble strategy due to the lack of stimuli. This will be the case in
the exploratory sequence learning task used in this study.

Studying sequence learning
The acquisition of sequences has been the subject of study
in domains ranging from linguistics (Elman, 1990; Saffran,
Newport, & Aslin, 1996; Reber, 1967) to everyday action
(Botvinick & Plaut, 2004; Cooper & Shallice, 2000), with
perhaps the serial response time task (SRT) being the most
popular paradigm (Nissen & Bullemer, 1987).

In the SRT task, a visual stimulus appears in one of four lo-
cations, horizontally arrayed on a computer screen. Four but-
tons are located below the four possible stimulus locations,
and participants are asked to quickly press the button when
the corresponding visual stimulus appears. In their original
study, Nissen and Bullemer (1987) compared a condition us-
ing random stimulus locations with a condition using a re-
peating, deterministic sequence, and found evidence for im-
plicit sequence learning: participants in the deterministic se-
quence showed larger reduction in response times than par-
ticipants in the random condition.

Most of the sequence learning literature has focused on
cued paradigms such as the SRT task, in which participants
have to respond to sequences of stimuli that appear. However,
sequence learning in daily life is often not learned by simply
chaining stimulus-response associations (Lashley, 1951). In-
stead, acquiring new action sequences is better characterized
as exploratory, in which people try several alternatives before
discovering the correct one.

A recent study adapted the SRT task to a reinforcement
learning paradigm (Kachergis, Berends, de Kleijn, & Hom-
mel, 2016). In this task, participants were not cued by the
stimuli, but had to explore the four alternatives to find out
which one was correct. Participants could collect points by
predicting the next stimulus correctly. A strong correlation
was observed between behavior on the SRT task and its rein-
forcement learning adaptation in terms of response time and
accuracy per sequence position. Interestingly, the final scores
were bimodally distributed, suggesting that participants used
different strategies. Although purely stimulus-based control
is impossible in this paradigm, it is clear that the accuracy of

1Although it should be noted that explicit sequence knowledge
is not necessary for learning (see e.g. Lewicki, Hill, & Bizot, 1988;
Nissen & Bullemer, 1987).

participants’ action plans showed a large range of variance.
Although their study investigated both the SRT task and its
reinforcement learning adaptation, the study had a between-
subject design, making it impossible to examine characteris-
tics of participants that produce effects that are common to
both tasks.

The current study

In scenarios where both stimulus-based control and plan-
based control are possible, participants may strategically (or
perhaps even randomly) choose an executive control mode.
In the current study, we investigated predictors of executive
control mode in an SRT task and action plan formation in a
reinforcement learning task in which plan-based control is the
only control mode available.

Earlier research has shown that visuospatial working mem-
ory capacity predicts both implicit and explicit sequence
learning performance (Bo & Seidler, 2009; Bo, Jennett, &
Seidler, 2011). In this study, we will look at visuospatial
working memory capacity and IQ measurements as predic-
tors of executive control mode that reflect cognitive limita-
tions. One possibility would be that some participants simply
do not have the cognitive capacity to form (long enough) ac-
tion plans. Another possibility would be that control modes
are chosen strategically or preferentially. The formation of an
action plan might reflect individual differences in the need for
structure. That is, some people may prefer to actively predict
the future according to a plan or schema instead of waiting for
stimuli to arrive, while others might want to delegate control
to the external environment (Neuberg & Newsom, 1993).

Method

Participants

Forty undergraduate and graduate students (13 males, 27 fe-
males) were recruited from Leiden University. Participants
either received course credit or were paid 6.50 EUR for par-
ticipation. All participants had normal or corrected-to-normal
vision. The total duration of the experiment was 90 minutes.

Materials

In order to assess possible predictors of participant behavior,
several tasks and questionnaires were administered.

Fluid intelligence Fluid intelligence was estimated using a
shortened, 10-minute version of the Raven’s Standard Pro-
gressive Matrices (SPM) test (Raven, Raven, & Court, 1998).
It measures the individual’s ability to form perceptual re-
lations and for analogical reasoning. It is a widely used
test to measure fluid intelligence, independent of language
and schooling, and is considered to have excellent reliability
(Burke & Bingham, 1969). The number of correct responses
in 10 minutes over all participants are normalized to a distri-
bution with mean 100 and SD 15, resulting in an estimated
IQ score.



Personal need for structure To assess participants’ ten-
dency to seek out structured ways of dealing with the
world, we administered the Personal Need for Structure scale
(Thompson, Naccarato, & Parker, 1989). This questionnaire
quantifies people’s need for simple structure, and consists of
12 statements (e.g. “I enjoy having a clear and structured
mode of life.”) which the participant can either agree or dis-
agree with, rated on a 6-point scale. It has been shown to have
good reliability and validity (Neuberg & Newsom, 1993). It
has been hypothesized that personal need for structure re-
flects a strategy for simplifying the world due to a general
lack of intellectual abilities, but the correlation between the
PNS scale and IQ seems to be minimal (Neuberg & Newsom,
1993). It is therefore more likely to reflect a strategy that par-
ticipants can choose to employ, and participants who score
high on this measure could be more likely to actively search
for structure in action sequences.

Visuospatial working memory We assessed visuospatial
working memory using the computer task from Bo et al.
(2011). In their study, which used an adaptation of the vi-
sual working memory task used by Luck and Vogel (1997),
a relationship was found between visuospatial working mem-
ory capacity and performance on a serial reaction time task.
In this task, participants were presented with a sample array
for 100 ms followed by a blank screen delay of 900 ms, after
which a test array was presented for 2000 ms. Participants
were asked to determine whether the test array was different
or similar to the sample array by pressing either D or S. Ar-
rays consisted of 2–8 colored circles, and for each trial the
test array was either the same as the sample array or different
with one of the colors changed. Visuospatial working mem-
ory capacity was calculated as K = array size (hit rate false
alarm rate). The average K across all array sizes was com-
puted to estimate visuospatial working memory capacity (Bo
et al., 2011). Participants completed 140 trials in total.

Trajectory SRT task The trajectory SRT task is an adap-
tation of the serial response time task introduced by Nissen
and Bullemer (1987). It maps the four buttons of the original
SRT task to four squares located on the corners of a com-
puter screen, requiring participants to move the mouse cursor
to each square that lights up (Kachergis, Berends, de Kleijn,
& Hommel, 2014a, 2014b). Unbeknownst to participants,
the sequence is a repeating sequence of 10 items. Speed-up
over time compared to a condition with a random sequence
is thought to reflect implicit learning of the sequence. In the
current study, we used a different sequence (3-2-4-2-1-4-3-4-
2-1) than in the original SRT task to prevent carryover effects
between this task and the RL task. The complete task con-
sisted of 800 movements (80 repetitions of the 10-item se-
quence). In order to assess first-order frequency effects, the
sequence was designed in such a way that it consisted of 8
straight movements, and 2 diagonal movements. After com-
pleting the 800 movements, participants were asked if they
noticed any structure within the experiment, and if so, were

asked to reproduce the sequence.

Reinforcement learning task The RL task is an adaptation
of the trajectory SRT task (see above), with the difference
being that the next stimulus is not cued, but to be discov-
ered by the participant through trial-and-error (Kachergis et
al., 2016). Participants moved to one of the four squares, and
received feedback by the square turning green in the case of
a correct movement, and being returned to the center of the
screen in the case of an incorrect movement. Points were
awarded for correct movements (+1 point), and deducted for
incorrect movements (-1 point), and participants were in-
structed to maximize their amount of points. The amount of
points collected was continuously visible to the participant,
their progress in the task, however, was not. The task ended
after 800 correct movements of the original SRT sequence
(4-2-3-1-3-2-4-3-2-1). A participant having knowledge of
the sequence before starting and who never made a mistake
would therefore make 800 movements directly to valid tar-
gets, receiving a theoretical maximum score of 800 points. A
participant with no memory of even the previous target they
had tried could make an infinite number of mistakes, never
finishing the experiment. If participants would not repeat the
same invalid target more than once when seeking each tar-
get (i.e. an elimination strategy), a participant would expect
on average to score 0 points, as the expected value of com-
pleting one movement successfully is 0 using this strategy2.
Participants were not told that there was a repeating determin-
istic sequence, let alone details such as how long the sequence
was.

Design and procedure
All participants performed both the trajectory SRT task, as
well as the reinforcement learning task. The order of the
two tasks was counterbalanced over participants, and the two
tasks used different sequences to prevent carryover effects.

Participants were seated at a computer after having given
their informed consent. All subsequent tasks were performed
on the computer. First, the Personal Need for Structure ques-
tionnaire was completed, followed by the visuospatial work-
ing memory task, and Raven’s SPM. After this, participants
were given a 5-minute break. Participants then completed, in
counterbalanced order, the trajectory SRT task and the rein-
forcement learning task.

Results
Trajectory SRT task
Prior to analysis, movement times > 1500 ms were removed,
and the experiment was divided into 10 blocks of 8 sequence
repetitions. As an analysis of data collected earlier using a
random sequence showed no significant difference in move-
ment times between straight and diagonal movements, there
was no correction applied for the somewhat larger distance
required to make diagonal movements.

233% chance of success in one try (+1), 33% chance of success in
two tries (-1+1), and 33% chance of success in three tries (-1-1+1).



(a) Participants’ movement time
decreased over time, indicating
learning of the sequence.

(b) Error rates increased during
the first three blocks, but re-
mained relatively stable during
the rest of the task.

Figure 1: Movement times and accuracy for the trajectory
SRT task. Error bars indicate 95% CI.

Response times Comparative analyses were performed us-
ing the means of participants’ median movement time, with
the movement time defined as the time between cue onset
(stimulus changing color) to touching any part of the stimu-
lus with the mouse cursor. Median movement time to a target
was 464 ms (SD = 223 ms). Participants’ movement time
decreased from 546 ms in the first block to 413 ms in the
tenth block, indicating learning of the sequence, F(9, 360) =
15.80, p < .001, η2

G = .126. Accuracy was high across all
blocks of the experiment, but especially so during the first
two blocks. There was an effect of time on accuracy, F(9,
360) = 4.50, p < .001, η2

G = .042, indicating some degree
of speed-accuracy tradeoff. However, after the third block
movement times are still decreasing, while accuracy remains
stable. Both movement times and accuracy are shown in Fig-
ure 1.

Explicit sequence knowledge Participants were grouped
into an implicit knowledge group and an explicit knowledge
group. Only those 13 participants who could correctly recall
the complete repeating sequence after having completed the
task were considered to have explicit knowledge. Participants
with explicit sequence knowledge had a significantly larger
working memory capacity (2.87 vs. 2.25, t(28.08) = 2.95, p =
.006, d = 1.11), but did not differ on estimated IQ or Personal
Need for Structure scales (ts < .81, ps > .42).

Modes of executive control Similar to Tubau et al. (2007),
we used frequency effects (i.e. the facilitation of responses
to frequent (straight) compared to infrequent (diagonal) tran-
sitions) to determine whether participants engaged in either
stimulus-based or plan-based control. An analysis of variance
revealed main effects of block, frequency, and knowledge on
movement time (see Table 1). Overall, participants with ex-
plicit sequence knowledge had faster movement times (M =
398 ms) than participants without (M = 485 ms), and frequent
(straight) movements were performed faster (M = 417 ms)
than infrequent (diagonal) movements (M = 496 ms).

Factor df F η2
G p

Block 9, 342 23.94 .17 < .001
Block × Knowledge 9, 342 8.37 .07 < .001
Frequency 1, 38 106.00 .09 < .001
Frequency × Knowledge 1, 38 4.43 .004 .042
Frequency × Block 9, 342 2.75 .005 .004
Knowledge 1, 38 6.44 .089 .015

Table 1: Results of analysis of variance on movement times.

(a) Participants made increas-
ingly larger movements during
the ITI.

(b) Initial distance to the stimu-
lus decreased over time, reflect-
ing correct prediction of the next
stimulus.

Figure 2: Predictive movements in the trajectory SRT task.
Participants made increasingly larger predictive movements,
which reflects correct prediction of the next stimulus. This ef-
fect was stronger for explicit than for implicit learners. Error
bars indicate 95% CI.

Predictive movements As the task progressed, participants
made an increasing amount of movement during the ITI—in
the absence of a stimulus, F(9, 342) = 6.53, p < .001, η2

G
= .053. Total ITI (predictive) movement, defined as the dis-
tance from the previous target at the onset of the next target,
increased from 171 pixels in block 1 to 305 pixels in block 10.
There was no main effect of knowledge. Results are shown in
Figure 2a. Similar to Dale, Duran, and Morehead (2012), we
define correct predictive movement as the distance to the next
target at target onset. An analysis of variance using block and
knowledge as factors shows a main effect of block, meaning
that distance to next target decreased from 609 pixels to 474
pixels, or that correct predictive movement increased over
time, F(9, 342) = 32.36, p < .001, η2

G = .22.
In the final block of the task, predictive movements (de-

fined as movements > 300 pixels during the ITI, but not
necessarily toward the correct target) appeared to show a
mixed distribution over participants. Where some partici-
pants hardly showed any movement during the ITI, others
had almost half of all their movements classified as predic-
tive. Hartigan’s dip test of unimodality (Hartigan & Hartigan,
1985) confirms this observation, D = .079, p = .038.

While implicit learners hardly increased their correct pre-
dictive movements, explicit learners showed a strong increase
over time, as evidenced by a block × knowledge interaction,



Figure 3: Differences in estimated IQ and visuospatial work-
ing memory capacity between low and high performers on the
reinforcement learning task. Error bars indicate 95% CI.

F(9, 342) = 14.00, p < .001, η2
G = .11. Results are shown in

Figure 2b.

Reinforcement learning task
Maximum score on the reinforcement learning task was 800,
with the most basic elimination strategy leading to 0 points.
Mean score was 525, ranging from 140 to 774 points. Dis-
tributions of scores was non-normal, with a large group of
participants scoring around 700 points, and a group scoring
quite low. For subsequent analyses, a midpoint split on 457
points was performed, dividing the participants into low and
high performers.

Predicting task performance Low performers on the rein-
forcement learning task had a significantly lower estimated
IQ of 91.4, compared to high performers with an estimated
IQ of 104.9, t(39) = 3.06, p = .004, d = .98. Also, low per-
formers had a significantly lower visuospatial working mem-
ory capacity of 2.13 vs. the high performers’ 2.65 capacity,
t(39) = 2.40, p = .021, d = .77. Results are shown in Fig-
ure 3. IQ and visuospatial working memory capacity were
uncorrelated, r(39) = .213, p = .181.

There was no difference between the two groups on the
Personal Need for Structure scale, t(39) = .28, p = .780. Ex-
plicit sequence knowledge was strongly related to task perfor-
mance, as the 23 participants with explicit sequence knowl-
edge had a far higher final score (M = 634) than partici-
pants without explicit knowledge (M = 375), t(24.67) = 4.61,
p < .001, d = 1.86.

Stimulus- vs. plan-based control In the SRT task, two
measures of executive control mode are used. First, explicit
knowledge of the sequence is considered to be an indica-
tor of a plan-based control mode, similar to Tubau et al.
(2007). Second, the amount of correct predictive movements
is evidence of the existence of an action plan, implying a
plan-based control mode. Participants with explicit sequence
knowledge in the SRT task were more likely to have acquired
explicit sequence knowledge in the reinforcement learning

task, McNemar’s χ2(1, N = 40) = 4.5, p = .034. This sug-
gests that the acquisition of explicit knowledge in both tasks
relies on a common mechanism or dependency. However,
the amount of correct predictive movements in the SRT task
was not related to the final score in the reinforcement learn-
ing task, r(38) = .025, p = .880, nor did explicit knowledge
in the reinforcement learning task relate to correct predictive
movements in the SRT task, t(38) = 1.32, p = .195.

In summary, participants using plan-based control in the
SRT task did not score higher on the reinforcement learning
task, but participants with explicit knowledge formation in the
SRT task were more likely to acquire explicit knowledge on
the RL task. This suggests that predictive movements and ex-
plicit knowledge do not similarly reflect successful plan for-
mation, and may not be equally good indicators for a plan-
based control mode.

Discussion
Learning was evident in both the trajectory SRT task and the
reinforcement learning task. In the trajectory SRT task, the
findings of Tubau et al. (2007) were replicated. The trajec-
tory paradigm allowed us to find further evidence for a plan-
based mode of control: participants made increasingly large
movements toward the next stimulus, but participants with
explicit knowledge of the sequence did more so than those
with implicit knowledge. Instead, participants without ex-
plicit knowledge tended to re-center the mouse during the ITI,
moving to a position equidistant to all stimuli.

In the reinforcement learning task, final scores showed
a bimodal distribution, similar to what has been reported
in Kachergis et al. (2016). The low-performing and high-
performing groups differed in IQ and working memory ca-
pacity, but did not differ in personal need for structure or lo-
cus of control. This suggests that sequence learning in an
exploratory paradigm is not determined by personal charac-
teristics or preferences, but by cognitive limitations.

In both the SRT task and the reinforcement learning task,
explicit sequence knowledge was predicted by visuospatial
working memory capacity. Earlier research by Bo et al.
(2011) showed a relationship between visuospatial working
memory capacity and performance on a non-trajectory SRT
task, but the current study shows that this holds in an ex-
ploratory paradigm as well and predicts explicit sequence
knowledge. The observation that participants who were more
likely to acquire explicit sequence knowledge in the SRT task
were also more likely to acquire it in the reinforcement learn-
ing task further corroborates this finding.

A promising approach to investigating this relationship is
by modeling the learning process in the reinforcement learn-
ing task. IQ and visuospatial working memory could be com-
pared to the learning rate and state space in reinforcement
learning models that are fit to the performance of individ-
ual participants. This may shed further light on the exact
mechanisms that explain the wide range of performance on
exploratory sequence learning.



Another possible explanation of the diverse learning out-
comes could be rooted in different beliefs about the task. Par-
ticipants were not told that the response locations would be
a repeating, deterministic sequence. They may have instead
believed it was to some extent probabilistic–as many psycho-
logical tasks are. Different assumptions about the task may
lead participants to arrive at different strategies, with variable
success in the task. Participants expecting a random sequence
may be less inclined to predict the next stimulus and are—
in the current paradigm—indistinguishable from participants
expecting a deterministic sequence but unable to learn it due
to intellectual limitations. However, manipulating these vari-
ables is straightforward and could be an interesting avenue
for future research.
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