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A B S T R A C T   

In this paper, we show that organisms can be modeled as hierarchical Bayesian control systems with small world 
and information bottleneck (bow-tie) network structure. Such systems combine hierarchical perception with 
hierarchical goal setting and hierarchical action control. We argue that hierarchical Bayesian control systems 
produce deep hierarchies of goal states, from which it follows that organisms must have some form of ‘highest 
goals’. For all organisms, these involve internal (self) models, external (social) models and overarching 
(normative) models. We show that goal hierarchies tend to decompose in a top-down manner under severe and 
prolonged levels of stress. This produces behavior that favors short-term and self-referential goals over long term, 
social and/or normative goals. The collapse of goal hierarchies is universally accompanied by an increase in 
entropy (disorder) in control systems that can serve as an early warning sign for tipping points (disease or death 
of the organism). In humans, learning goal hierarchies corresponds to personality development (maturation). The 
failure of goal hierarchies to mature properly corresponds to personality deficits. A top-down collapse of such 
hierarchies under stress is identified as a common factor in all forms of episodic mental disorders (psychopa
thology). The paper concludes by discussing ways of testing these hypotheses empirically.   

1. Introduction 

For centuries, scientists have attempted to discover natural laws that 
govern the structure and function of living systems. This effort is now 
producing some interesting results due to theoretical advances, the 
advent of high-throughput datasets and a huge increase in computing 
power (Kitano, 2017). Currently, the field still shows a global division 
between biological and computer sciences, which represents a funda
mental distinction in the way the problem has been approached to date, 
i.e. either by studying living systems themselves (e.g. biology, genetics, 
biochemistry) or by studying artificial versions of them (e.g. engineer
ing, computer science and robotics). Below, we will first discuss progress 

in the fields of artificial systems and biological systems separately. We 
will then merge insights from both fields to produce a general theory on 
information processing in living systems and the way they respond to 
stress. We highlight the universality of this response along with its 
applicability in humans, and conclude by discussing methods to test the 
model empirically. 

2. Artificial systems 

2.1. Organisms as control systems 

Artificial intelligence has now come to a point where computers are 
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able to reach (super)human level performance in complex tasks without 
prior instructions (Mnih et al., 2015; Schmidhuber, 2015; Silver et al., 
2017). The basis for this achievement lies in the beginning of the 20th 
century, when cyberneticists such as W.E. Ashby began to model or
ganisms as control systems (Ashby, 1961; Cannon, 1929, 1932; Powers, 
1973a). Such systems maintain internal stability despite changes in 
environmental conditions by generating some kind of output (O) that 
aims to match the current input state (I) with a desired or anticipated 
throughput state (T; a reference value or setpoint). Ashby was the first to 
highlight the importance of a close coupling between the output and the 
input of such systems, which is referred to as ‘feedback’. To prove his 
claims, Ashby constructed a device called a ‘homeostat’, which involved 
four subsystems that kept each other in check. Each subsystem consisted 
of a first-order feedback loop that regulated ‘essential variables’ (e.g. 
blood pressure, glucose levels) and a second-order feedback loop that 
re-organized a system’s input–output relations when first-order feed
back failed, allowing the perturbed system to revert to a stability of its 
essential variables after all (Seth, 2014). The former, primary form of 
stability is referred to as homeostasis, whereas the latter form of stability 
(through additional change) is referred to as ‘allostasis’. This double 
feedback system is one of the earliest forerunners of ‘hierarchical con
trol’ (see below). By combining four coupled subsystems into one 
homeostat, the entire control system showed ‘ultrastable’ behavior. 

In engineering, control systems are used e.g. in central heating sys
tems, which aim to maintain a stable room temperature despite envi
ronmental fluctuations by controlling the radiator. This is done using a 
control system that compares the current room temperature encoded by 
a temperature sensor (an input node) to that of a thermostat, which 
serves as a reference node that encodes a desired temperature (a set
point). The difference between the two (the error) is transferred in some 
form to the radiator (an output node), which tries to close the gap be
tween the desired and actual room temperatures (the environment) by 
emitting heat. Studies indicate that living systems have conditionally 
independent compartments for input, evaluation and output that allow 
them to behave in similar ways as control systems (Kirchhoff et al., 
2018). Organisms use their senses to monitor the state of their envi
ronment and compare their input states to a setpoint state located within 
a throughput part. The error is then transferred to the output part of the 
organism, which tries to close the gap between the desired and actual 
environmental states by generating action (see Fig. 1). Actions then 
change the state of environment, which feeds back into the senses and 
the process is repeated. This iterative process helps organisms to find an 
optimal environmental niche. For example, motor activity in woodlice 
continues almost ceaselessly and drops to zero only when humidity 
levels reach near 100 % (a setpoint). As a result, woodlice keep running 
around erratically until they hit upon a wet place, which is why we find 
these creatures in all sorts of nooks and crannies. This behavior helps 
woodlice prevent desiccation and makes them invisible to predators 
(Friston et al., 2018). 

Seminal work by W.T. Powers (1973a,b) showed that biological 
systems vary their output freely until the state of the input node matches 
a reference value. Their behavior thus serves to keep a percept (of some 
environmental condition) within certain limits. Woodlice probably have 
no clue as to where exactly in the garden they can find a particular 
crevasse, after which they engage in a carefully controlled output 
sequence that is aimed at reaching the desired spot. Instead, they just 
stumble upon a dark and wet place that produces the kind of sensor 
output that makes motor activity drop to zero. Since Powers considered 
organisms to control their input (percepts) by means of their output 
(behavior) and its subsequent effects on the environment, this type of 
control was called ‘perceptual control’ (Powers, 1973a). Perceptual 
control theory is highly pragmatic: rather than the specific actions, it’s 
the end-result that counts. By freely ‘emitting behavior’ (Skinner, 1990) 
until a desired effect is obtained, organisms can come up with a number 
of different solutions to the same problem (e.g. running and hiding in 
crevasses, rolling up, or digging in all prevent desiccation). This adds 

flexibility and creativity to the production of behavior (Powers, 1973b). 
The advantages of perceptual control have been demonstrated in a 
number of experiments. For instance, robots that run on perceptual 
control systems can be pushed off their feet in many different ways yet 
remain stable, whereas robots that run solely on action-control systems 
can correct their position only in a limited number of ways and tip over 
(Johnson et al., 2020). 

2.2. Organisms as hierarchical control systems 

Graphical models such as Fig. 1 can produce behavior that can 
appear quite life-like (Braitenberg, 1984; Powers, 1973a). Nevertheless, 
such models require an extension in order to explain more complex 
forms of behavior, i.e. the formation of action sequences that allow or
ganisms to accomplish more complex tasks. For instance, making a cup 
of coffee involves a number of simple subtasks (‘action primitives’) that 
need to be placed in a particular order in order to succeed (e.g. heating 
water, grabbing a cup, pouring hot water over churned coffee beans, 

Fig. 1. Organisms as Control Systems. 
Note: Organisms can be modeled as control systems that consist of an input 
node I (a sensor), a throughput node T (a setpoint) and an output node O (an 
effector), which are connected by links that symbolize the possibility of energy 
exchange between these nodes (see text). Arrows show the direction of energy 
flow, colors indicate positive or negative relationships (red: negative, blue: 
positive). The sensory node I has a state i(t) that is changed as a result of a 
stimulus s(t) from the environment C (context), which is in a changing state c 
(t). The state i(t) of the sensory node I is sampled by an afferent connection and 
the resulting state a(t) is compared to (i.e. subtracted from) the state T(t) of a 
throughput node T (the setpoint or reference node). The difference (error e(t)) 
between the two states is passed on by efferent connections to the output node 
O (in state o(t)), which generates the corrective response r(t) to the environ
ment C, and so on. External disturbances of the environment C are modeled by 
d(t). The setpoint of the system T can be reset by the output from higher level 
control systems, see text. 
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pouring the coffee into a cup, adding milk or sugar, etcetera; Botvinick, 
2007). Such output sequences can be more or less efficient depending on 
the order and the number of recursions in which the subtasks appear 
(Commons and Pekker, 2008; Solway et al., 2014). Powers showed that 
perceptual control systems can produce action sequences (behavior) by 
allowing their setpoints to be reset by the output of other (higher level) 
control systems and so on, yielding a hierarchy of control systems 
(Powers, 1973a,b; Powers et al., 1960). This hierarchy is symbolized in 
Fig. 1 by the input r′(t) to the setpoint node T. This is the output of a 
higher-level control system that feeds into the reference signal of a 
subordinate control system. Fig. 2 shows a more elaborate example of a 
hierarchical perceptual control system. 

The idea that higher order control systems continuously update the 
setpoints of lower-level systems (to eventually affect the activity of ac
tion primitives) is known as the equilibrium setpoint hypothesis for motor 
control (Feldman and Levin, 2009). In hierarchical action control, 
primitives can be compared to individual musical notes that are acti
vated in parallel (‘chords’) or in different sequences in order to produce 
the ‘music’ of behavior. Studies of hierarchical action control show that 
action sequences do not require a strict correspondence with the hier
archical wiring of the control system (i.e. we do not engage in a fully 
hierarchically controlled sequence of coffee-making actions that is spat 
out from the very beginning of grabbing coffee beans to sipping from the 
cup; de Kleijn et al., 2014d). Rather, organisms produce intermittent 
bursts of hierarchically organized action sequences that are updated by a 
repeated sampling of the environment (action–perception cycles) (Bot
vinick, 2007). This is comparable with a musician looking up and down 
at the scroll sheet every now and then to keep track of the piece. 
Although hierarchical action control seems to contradict the notion of 
hierarchical perceptual control, it remains consistent with this notion in 
the sense that organisms use their (hierarchically controlled) action 
sequences to eventually control their input states via the environment. 
Hierarchical action control is routinely used in e.g. robotics, allowing 
robotic systems to show complex forms of behavior (e.g. Brooks, 1986). 

In the past few decades, graphical models of control systems have 
been modified to explain increasingly complex forms of behavior. Much 
progress came from studies of reinforcement learning (also termed op
erant conditioning), which added the elements of memory and prediction 
to control systems (Jordan and Mitchell, 2015; Sutton and Barto, 2018). 
Such systems update their policies (input–output strategies) depending 
on the expected reward of some action. The expected reward (a 

prediction) is encoded by the setpoints of these systems, of which the 
state represents the reward or value obtained after a previous action (i.e. 
a memory). These predictive setpoints are continuously reset (updated) 
as a function of previous outcomes, keeping track of the values that 
maximized reward in the past. Thus, reinforcement learning systems 
iteratively learn the policies that maximize long-term cumulative 
reward. Whereas earlier systems made no detailed models of the envi
ronments they live in (so called model-free systems), later systems were 
allowed to make explicit predictions of the way in which certain imag
inary actions would change the input to the system, considering previ
ous experiences (model-based systems) (Doll et al., 2012; Solway and 
Botvinick, 2012). Such ‘world models’ are simulations of actions and 
their possible outcomes (e.g. where different paths in a maze lead to and 
how rewarding that would be), which are based on memories of previ
ous actions and their outcomes. Predictive activity of this type has been 
compared to the act of planning, imagination, or goal setting, which is 
why model-based systems are alternatively referred to as goal-directed 
systems. Goal-directed systems require an elaboration of their 
throughput parts, to accommodate hierarchies of setpoints that encode 
complex predictive models of the world. Such ‘goal states’ are contin
uously updated and pursued by hierarchically organized action se
quences until a maximum value has been reached. Studies show that 
hierarchical model-based systems such as these outperform hierarchical 
model-free systems in spatial navigation tasks (Botvinick and Weinstein, 
2014). This is because such systems construct hierarchies of goals and 
corresponding subgoals (so called ‘goal hierarchies’), which are each 
pursued in a logical order until the global goal has been reached (e.g. 
’get to fruit’ = climb tree, jump to other tree, sling to branch, grab the 
fruit, eat the fruit). 

In the past decade, goal-directed learning has been applied within 
the context of artificial neural networks (Schmidhuber, 2015). Such 
networks consist of a layer of input nodes that connect to a layer of 
throughput nodes (a hidden layer), which in turn connects to a layer of 
output nodes. When such systems are trained, the connections within 
the network are altered until a given input produces a suitable output. It 
turns out that the performance of such systems increases significantly 
when their throughput parts are extended to include multiple, hierar
chically ordered layers of nodes. Such deep networks can associate raw 
perceptual input (say, the image of a cat) to a suitable output (e.g. a 
hierarchical output sequence ‘C – A – T’) with remarkable precision. 
When deep networks are allowed to construct explicit world models 

Fig. 2. An Example of a Hierarchical Perceptual Control Sys
tem. 
Note: Classical example of an artificial hierarchical control 
system, which involves the stacking of one control system on 
top of another, to produce multiple levels of control. This can 
be compared to the stacking of one array of thermostats on top 
of another in order to better control temperature fluctuations 
in the environment. The output of higher-level control systems 
can modify the setpoints of subordinate systems (and so on) to 
produce ordered sequences of action primitives, which we call 
behavior.   
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(goal hierarchies), their performance increases even further. Such hi
erarchical ‘deep belief’ systems can ‘imagine’ a future and formulate 
efficient sequences of goals and corresponding subgoals that are pursued 
by means of complex action sequences until the input to the system 
matches the global goal. Such systems can achieve high success rates 
(Nagabandi et al., 2018; Pascanu et al., 2017; Racanière et al., 2017; 
Yamins and DiCarlo, 2016). The performance of these systems comes 
close to what neuroscientists believe is the essential nature of the human 
brain: an active inference engine, whose primary job it is to construct 
predictive models of what is going on in the environment and to test 
these models by performing some kind of action out into the environ
ment. Such actions change the input to the system (via the environ
ment), which serves as a check on model evidence (Friston, 2010. 
According to active inference theory, organisms cannot only reduce 
prediction errors by varying motor output impacting on percepts (as 
perceptual control would have it), but also by updating their world 
models to produce a better fit with their input states (a process called 
‘Bayesian belief updating’). See below for further information on active 
inference. 

In summary, adding hierarchy to the output parts of control systems 
allows for the production of complex action-perception sequences 
(behavioral hierarchies), whereas adding hierarchy to the throughput 
(goal) parts further boosts the performance of such systems by produc
ing efficient strategies (goal hierarchies). More recently, studies began 
to apply hierarchical structure to the input layers of deep networks 
(Mnih et al., 2015; Simonyan and Zisserman, 2014). The hierarchical 
structure of perceptive areas has been relatively ignored in previous 
studies, despite the fact that this is a well-known attribute of the cerebral 
cortex in higher mammals (e.g. receptive fields in the macaque visual 
cortex) (Hegdé and Felleman, 2007; Rohe and Noppeney, 2015). Hier
archical perception allows control systems to extract increasingly ab
stract patterns and shapes from raw perceptual input (Karklin and 
Lewicki, 2009; Kriegeskorte, 2015; Tenenbaum et al., 2011). In 2015, a 
seminal study was the first to combine hierarchical input (abstract 
vision) with hierarchical throughput (abstract goal-setting) and hierar
chical output (complex action, behavior) to produce human-level per
formance in complex visuospatial tasks (playing Atari computer games; 
Mnih et al., 2015). The system only took raw pixel intensity values as 
input, after which it autonomously discovered complex series of stra
tegies (goals and corresponding subgoals, e.g. taking elaborate detours 
through a maze) and action sequences (series of jumps and other com
plex movements) to maximize the outcome of the game (increasing the 
total score). Similar systems have since shocked the world by beating 
human experts in activities as diverse as media classification (Simonyan 
and Zisserman, 2014; Tran et al., 2015), medical diagnostics (Litjens 
et al., 2017) and the game of Go (Silver et al., 2017) and are quickly 
finding their way into robotics (Sünderhauf et al., 2018). In short, recent 
history shows that adding hierarchical structure to the various compo
nents of a control system has contributed much to their enormous 
success. 

As illustrated above, the idea that living systems behave as hierar
chical control systems is hardly new. Despite its firm rooting within the 
field of psychology and neuroscience, however, the concept of hierar
chical control has been studied largely from the perspective of engi
neering and computer science, devoting little attention to the finer 
details of the architecture and function of living systems. Conversely, the 
idea that biological networks can be modeled as hierarchical control 
systems has escaped systematic attention in the biological sciences. In 
the past two decades, there has been a tremendous increase in our 
knowledge of the structure and function of living systems. This has 
shown that organisms follow generic rules of structure and function that 
apply universally to all living systems (see below). These insights have 
only partly been integrated with the field of control theory and machine 
learning. The purpose of the current paper is to bring these two influ
ential fields of science further together. We will show that biological 
systems have a generic network structure that makes them ideally suited 

to function as hierarchical Bayesian control systems. Such systems can 
extract increasing amounts of contextual information from their inner 
and outer environments, construct increasingly articulated goal hierar
chies and generate increasingly complex action sequences in order to 
reach (long-term) stability. We then identify a universal (stress)response 
of organisms to contextual cues that overtax their regulatory capacity 
and ability to remain stable. Such rules can be used to model organisms 
of any type, including humans. 

3. Biological systems 

Network science is booming, ever since the (re)discovery some 20 
years ago of the small world network structure (Milgram, 1967; Watts 
and Strogatz, 1998) and the subsequent demonstration that universal 
laws of network theory govern network structures across a wide range of 
biological, psychological and social systems (Barabasi, 2013; Barabasi 
and Bonabeau, 2003; Barabasi and Oltvai, 2004; Barzel and Barabasi, 
2013a,b; Newman et al., 2006; Oltvai and Barabasi, 2002). Because of its 
ability to connect different fields of science using a single methodology 
and corresponding terminology, network science holds considerable 
promise as a unifying discipline for many different fields, including 
biology, ethology, psychology and sociology. Below, we will first sum
marize some of the main findings from translational network science and 
identify generic rules of network architecture and function that apply to 
all living systems. We will then examine generic changes in biological 
systems when put under severe levels of stress. 

3.1. On the structure of biological systems 

At some level of abstraction, the whole of living nature can be 
considered to represent the interaction between building blocks that 
cluster together to form new building blocks, and so forth, until complex 
multicellular life develops (Oltvai and Barabasi, 2002). Collections of 
molecules form organelles, which in turn form cells, which in turn form 
tissues, which in turn form organs, organisms, organizations, biotopes, 
and so on. At each scale level of biological organization, the interaction 
between the building blocks that exist at this level (be they organelles, 
cells, organs, or organisms) can be visualized as a network structure in 
which building blocks are represented by nodes and their mutual con
nections by links. Almost without exception, biological networks show a 
topological structure called the small world structure, meaning that most 
nodes have few connections but some have many (the so-called hubs; 
Fig. 3). Hubs interconnect the various nodes of the network, allowing 
any two nodes in the network to be connected through a small number of 
intermediate steps, hence the term ‘small world’ (e.g. all people in this 
world are an average of only 6 degrees of separation apart). Hubs con
tract large numbers of nodes into densely connected clusters (also called 
communities or modules; Girvan and Newman, 2002; Newman, 2006). 
The nodes that lie within such clusters share more connections amongst 
themselves than with other nodes within the network, forming sub
networks of their own. Small world structures are a general hallmark of 
biological systems and can be observed throughout living nature 
(Fig. 3). 

Small world network structures turn out to be scalable, meaning that 
network clusters may themselves serve as nodes in a new network 
structure at a higher scale level of spatial organization, and so on. Thus, 
biological networks form hierarchies of part-whole relationships, in 
which higher levels of organization cannot exist without their constit
uent lower levels of organization (i.e. they form conditional de
pendencies in space) (Ravasz and Barabasi, 2003). Each new scale level 
again conforms to a small world network structure with multimodular 
features, which is why this architectural principle is called scale-invar
iant, or scale-free (Fig. 4; Barabasi, 2009). The scale-invariance of small 
world network structures has been compared to mathematical constructs 
called fractals: self-similar shapes that follow relatively simple algebraic 
rules across multiple scale levels of aggregation (Gallos et al., 2007; 
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Song et al., 2005, 2006). Nested modular network structures such as 
these form spontaneously under the right conditions (i.e. a constant flux 
of energy into open dissipative systems), since such topologies allow 
network systems to get rid of their excess energy in the most efficient 
way, by minimizing resistance to energy flow (Jarman et al., 2017). A 
basic thermodynamic rule therefore suffices to produce network 

structures with short and efficient paths: a phenomenon called self-
organization (Ashby, 1947; Kauffman, 1993). It has been hypothesized 
that life kick-started from small world networks of chemical reactions, 
which subsequently adapted to meet the more complex demands of life 
(Kauffman, 1996; Ramstead et al., 2018). 

Fig. 3. Organisms as Small world Network Structures. 
Note: Organisms can be conceived of as small world network 
structures. In such networks, hub nodes interconnect all other 
nodes in the network in such a way that the network as a 
whole has a small average pathlength (i.e. each node is only a 
small number of steps away from any other node in the 
network). In small world networks, hubs contract parts of the 
network into communities (modules), which are collections of 
nodes that share more connections amongst themselves than 
with other nodes. Because of such features, small world net
works allow for highly efficient forms of information transfer 
at low wiring costs with a high tolerance for random damage. 
They are found in any ‘connectome’ studied thus far, including 
genomes, proteomes, metabolomes, microbiomes, neural con
nectomes, food webs and social networks.   

Fig. 4. Scale Invariant Structure in Small world Networks. 
Note: Schematic representation of scale invariant structure in small world networks. In such networks, hub nodes contract sets of other (hub) nodes into network 
clusters. Such clusters may themselves be considered nodes that cluster into superclusters and so on, producing a hierarchy of part-whole relationships. A small world 
network topology (see text) is found at each spatial scale level of biological organization, which is why this topological feature is called ‘scale invariant’ or ‘scale free’. 
Blue node: central hub, which connects a set of 6 red nodes into a single network cluster. Red nodes are themselves hubs that each contract a set of 6 yellow nodes 
into another network cluster, etcetera. Note that this process of nested clustering can be repeated almost endlessly, illustrating the concept of scale invariance of small 
world network topology (i.e. any node in his figure may be a network cluster, supercluster, and so on; blue nodes may be drawn into clusters by high level hub nodes, 
or green nodes may become hubs by adding nodes). Right picture shows a sideview of the left image in which the vertical position of a node indicates its position 
within a nested hierarchy of hub nodes (a ‘rich club’; Opsahl et al., 2008). 
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3.2. On the function of biological systems 

Biological networks are not just static structures. Energy1 flows 
through such structures in the form of electrons, e.g. chemical reactions 
at the level of receptors and genes, or electromagnetic changes at the 
level of neurons. In small world networks, some parts of the network 
receive energy (input) from the environment and change their states 
accordingly. These states are then altered as they flow on through the 
network in ways that depend on the wiring patterns of the nodes and 
modules in that part of the network (throughput). The processed states 
are then passed on to other nodes and modules (output) that lead to 
some action out into the environment. This succession of state changes is 
often referred to as network ‘function’. Apart from universal rules of 
network structure, studies are now beginning to identify rules of 
network function that apply across different species and scale levels of 
biological organization (Barzel and Barabasi, 2013a,b; Friston, 2012; 
Gosak et al., 2018; Kitano, 2004). For instance, the 
input-throughput-output (I/T/O) organization of most biological net
works turns out to resemble the shape of an hourglass, or ‘bow-tie’ 
(Fig. 5, left image; Csete and Doyle, 2004; Kitano, 2004). The input parts 
of these structures involve multiple input streams converging onto hub 
structures, which in turn converge onto higher level hub structures, 
etcetera, following a hierarchy of part–whole relationships in an upward 
manner. This goes on until a limited number of high-level hub structures 
is reached (i.e. the throughput parts). The output parts then involve 
multiple outputs diverging from these throughput hubs onto lower level 
hub structures and so on, down the nested hierarchy to the level of in
dividual nodes (Fig. 5, right image). For example, a large number of 
sensory receptors and corresponding second messenger pathways fan in 
to a relatively small number of nuclear genes (the waist of the hour glass, 
or the knot of the bow-tie). Multiple outputs then fan out from these 
genes in the form of messenger RNAs that instruct a large number of 
ribosomes to produce all kinds of proteins that are cleaved into even 
more proteins (Barabasi and Oltvai, 2004; Watson et al., 2015; Zhao 
et al., 2006). A similar organization can be observed in the human brain 
(Markov et al., 2013). Here, a large number of neural columns within the 
visual cortex (coding for color, texture, speed, orientation, etcetera) 
converge onto a smaller number of brain areas involved in object rep
resentations, which in turn converge onto a few brain areas coding for 
global visuospatial scenes. This convergence goes on until anterior and 
frontal areas are reached that harbor some of the most global (‘domain 
general’) representations of the inner and outer environment (the waist 
of the hourglass). These global states then bias activity levels in several 
subordinate brain areas involved in the planning and execution of motor 
programs, which control a multitude of pyramidal cells and muscle fi
bers to produce motor action (Badcock et al., 2019; Bullmore and 

Sporns, 2009; Freeman, 2005; Mesulam, 1998, 2008; Meunier et al., 
2010). Bow-tie structures have been observed in the immune system, the 
internet and within other bow-ties (i.e. bow-ties nested within bow-ties), 
making this motif a scale invariant phenomenon (Box 1; Friedlander 
et al., 2015; Kitano, 2004; Zhao et al., 2006). 

The ubiquity of the bow-tie motif has sparked questions regarding its 
functional significance. Bow-ties allow biological networks to convert a 
host of different inputs into a multitude of outputs using a minimal set of 
basic operations. Novel inputs and outputs can be easily plugged into a 
generic core of hub processes without affecting the system as a whole, 
making it a highly versatile structure. Thus, biological networks can 
combine robustness with adaptability in a chaotic world full of stimuli 
(Kitano, 2004). Simulation studies show that hierarchical networks 
spontaneously evolve bow-tie structure under some restrictions (Fried
lander et al., 2015). Resources need to be scarce, and the evolutionary 
‘goal’ that these networks aim to satisfy needs to be ‘compressible’, i.e. it 
should be possible to represent subordinate goal states by an increas
ingly small number of higher-level variables without losing too much 
information. This continues until the top of the hierarchy is reached (the 
knot of the bow-tie, or the waist of the hourglass). The minimal width of 
the bow-tie structure therefore represents the maximum level of 
compression of an evolutionary goal, with subordinate structures rep
resenting lesser compressed versions of the goal state (Friedlander et al., 
2015). As we shall see below, this aspect of bow-ties structures turns out 
to be rather fundamental: a high-dimensional input is forced through a 
bottleneck, or low-dimensional manifold. This relates to the concept of 
dimensionality reduction which can be found throughout statistics and 
machine learning (e.g. principal component analysis and other clus
tering methods (Sorzano et al., 2014)). Studies have shown that 
imposing an ‘information bottleneck’ structure onto hierarchical (deep) 
networks significantly increases their performance by allowing for some 
form of compression and generalization of events that take place at 
lower levels (Hafez-Kolahi and Kasaei, 2019; Shwartz-Ziv and Tishby, 
2017). Apparently, living systems minimize complexity cost and use the 
fewest degrees of freedom to model their environments, i.e. Occam’s 
principle (Maisto et al., 2015). Organisms can therefore be conceived of 
as dimension reduction machines that perform a hierarchical clustering 
on input in an attempt to find the most parsimonious (global) repre
sentation without losing too much information. Such high-level com
pressed representations then fan out to the lower parts of the output 
hierarchy to produce coordinated action sequences. In short, the bow tie 
motif provides organisms with an optimal infrastructure to function as 
hierarchically organized (and model based) control systems. 

The flow of information across bow-tie network structures is not a 
simple process with energy flowing directly from input (via throughput) 
to output areas in a linear fashion (Kitano, 2004). Bow-tie structures 
may show cross-connections (shortcuts) between their input and output 
parts at different levels of the hierarchy, causing the structure to fold 
back onto itself (Fig. 5, right image). This produces short input– 
throughput-output loops near the bottom of the hierarchy as well as 
longer loops that run from input to output along progressively longer 
throughput loops, reflecting different degrees of processing (Fig. 6). 
Additionally, feedforward and feedback loops run down and up the hi
erarchy respectively, reflecting predictive coding as well as corrections 
of such predictions by means of novel input (Box 1, Fig. 6). Such 
structures differ from hierarchical control systems that are traditionally 
used in engineering and machine learning and come with specific 
functionality. In recent years, insights have grown that organisms are 
not merely reactive agents that respond passively to external stimuli. 
Rather, they seem to actively model the causal structure of their inner 
and outer worlds and use memories to predict future events in a bio
logical equivalent of Bayesian inference (Box 1). The idea that biological 
organisms engage actively in some form of hierarchical Bayesian infer
ence has produced an explosion of literature in the past decade (Box 2). 
In this view, each level within a hierarchy generates a predictive model 
of the hidden causes of the effects (events, activity) observed at a lower 

1 We will use the notion of energy to stand in for the dynamics that couple 
different nodes or clusters in network graphs. Technically, the energy can be 
thought of as a log probability of a given state of a node or cluster (i.e. the rarity 
of a given state, which serves as measure of information content) and the dy
namics of network systems can usually be framed in terms of gradient flows on 
this log probability (i.e. gradient flows on rarity, or information content). A nice 
example is given by the free energy principle (see below), which defines pre
diction error as the gradient of variational free energy. In other words, when we 
talk about energy flows (and network function) we are actually talking about 
gradient flows on free energy that usually have an interpretation in terms of 
information flows. As we will see below, this corresponds to predictive coding 
and Bayesian belief updating in a variational setting (e.g. in artificial or bio
logical systems). 

2 In this paper we refer to (anatomically) backward or descending connec
tions as (control theoretic) feedforward connections, which convey predictions 
(‘Bayesian beliefs’). Conversely, we refer to (anatomically) forward or 
ascending connections as (control theoretic) feedback connections, which 
perform an update on predictions after measurement (this is called ‘Bayesian 
belief updating’, see below). 
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hierarchical level of organization. The error between the model and the 
organism’s sensory states served both to update the model and to inspire 
action, which changes the environment to alter perception, after which 
the process reiterates. Such generative models perform well across a 
limited number of observations and trials and their predictions gener
alize well beyond the subset of training data, suggesting that a certain 
amount of ‘creativity’ is involved in hierarchical Bayesian modeling 
(Blei et al., 2017; Tenenbaum et al., 2011). This creative property of 
higher level models has been linked to the concept of emergence in 
complex systems (Griffiths et al., 2010; McClelland et al., 2010). So far, 
however, it has remained largely unclear how this type of processing is 
implemented in biological systems. This will be discussed in the next 
section. 

3.3. Organisms: nested modular network structures that 
function as hierarchical Bayesian control systems 

In the previous section, we saw that organisms are optimally wired to 
function as hierarchical (nested modular) control systems that combine 
hierarchical perception (input) with hierarchical goal setting 
(throughput) and hierarchical action control (output), to iteratively 
respond to their environments. Below, we will discuss how energy flows 
travel through such systems (hierarchical message passing) to support 
Bayesian inference, turning organisms into hierarchical Bayesian con
trol systems. 

Organisms do not simply respond randomly to environmental stim
uli. Rather, they must connect input patterns to output patterns in ways 
that are compatible with life, e.g. when the input is ‘food’ (glucose), a 

suitable output would be ‘approach’. When the input is ‘predator’ 
(smell), a suitable response would be ‘avoid’. Such non-random re
sponses are called ‘adaptive’, since they allow organisms to adapt to 
changing environmental conditions and survive (Gross and Blasius, 
2007). Connecting input patterns to adaptive output patterns (‘policy 
selection’) can be a daunting task for any organism, however. Most or
ganisms live in a rich context of environmental circumstances, which 
contains multiple cues that may elicit conflicting responses (e.g. 
approaching food, but avoiding a predator). Such conflicts must be 
resolved in order to survive (i.e. responses must be prioritized and put in 
sequence). This requires organisms to build an integrated rather than 
segregated representation of their environments (e.g. input (food| 
predator), instead of input (food), input (predator)). Because of their 
peculiar structure, nested modular (hierarchical) network structures are 
optimally suited to produce such integrated representations (van den 
Heuvel et al., 2012v). The input parts of such structures involve multiple 
inputs that converge onto fewer hub structures (Fig. 5). Like spiders in a 
web, such hubs keep in touch with the states of large numbers of func
tionally segregated nodes and clusters in the network, each of which 
confers part of the relevant information concerning the inner and outer 
environment. The state of such hubs thus provides a summary repre
sentation of the states of all nodes that connect to it (i.e. a state with a 
higher level of parsimony and abstraction than its subordinate substates, 
e.g. input (food|predator)). Such functional integration goes on until the 
top of the nested hierarchy of network clusters has been reached. At each 
level within the input hierarchy, integrated input states are compared to 
integrated reference states at a similar hierarchical level (e.g. 
throughput (food|predator), after which the ensuing errors are 

Fig. 5. Organisms as Nested Modular Small World Networks: The Bow-tie (Hourglass) Motif. 
Note: Left image:organisms can be conceived of as nested modular small world network structures with a distinct input-throughput-output organization: a bow-tie 
(2D) or ‘hourglass’ (3D) structure. The input parts of such networks involve multiple energy streams converging onto each other while ascending in a hierarchy of 
part-whole relationships (left part of bow-tie). Conversely, the output parts involve multiple energy streams diverging while descending in the hierarchy (right part of 
bow-tie). The ‘knot’ of the bow-tie (or the waist of the hourglass) lies in between its input and output parts (i.e. the throughput part). This motif can be observed 
across multiple scale levels of organization, making it a scale invariant feature. Right image:bow-tie motifs may show cross-connections (shortcuts) between their 
input and output parts at different levels within the hierarchy, causing the structure to fold back onto itself (right figure). This allows energy to travel from input and 
throughput to output structures across loops of various pathlengths, corresponding to different degrees of information processing (see Fig. 6). Please note that arrows 
in this figure only show the global direction of energy flow. Feedback and feedforward connections2 run up and down the various levels of the hierarchy, which are 
thought to represent prediction errors and predictions relative to lower-level input (Box 1). 
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conferred to output hubs at a similar level, which then disseminate 
across lower levels of output hubs, etcetera, to eventually generate 
complex output sequences (see Section 2). 

While encoding their environments, organisms have to solve the 
‘binding problem’ i.e. they need to decide whether signals come from a 
common cause and should be integrated (i.e. represented by a single 
node or cluster), or whether they come from independent sources and 
should be segregated (i.e. represented by separate clusters) (Rohe et al., 
2019). The number of independent clusters in a nested modular hier
archy is therefore a function of the number of independent contextual 
cues that need to be controlled by the organism (Ashby, 1956, Conant 
and Asby, 1970; Edlund et al., 2011). When environments grow more 
complex, organisms need to incorporate more clusters in order to pro
duce increasing articulated (contextualized) models. Functional inte
gration across these clusters then increases the hierarchical depth of 
such systems, allowing for increasingly abstract representations. For 
instance, some organism can be confronted with food (input A), a mate 
(input B), a rival (input C) and a predator (input D), all at the same time. 
It then has to choose whether to eat (output 1), mate (output 2), fight 
(output 3) or hide (output 4), given its own internal state hungry (input 
a), alone (input b), wounded (input c), or weak (input d). Each of these 
factors needs to be encoded into a separate node or cluster (‘functional 
segregation’, ‘specialization’ or ‘factorization’, e.g. input (A, B, C, D, a, 
b, c, d)). The functional integration across such perception primitives 
then produces a hierarchy of part-whole relationships that allows for 
increasingly abstract (contextualized) percepts when moving up the 
hierarchy (e.g. input(A|B|C|D|a|b|c|d = input(X)). Similarly, adding 
primitives to the output parts of a bow tie allows for a richer repertoire 
of actions (e.g. output(1, 2, 3, 4)). A deeper integration across such 
clusters produces more elaborate forms of action control and more 
complex forms of behavior (e.g. ‘courtship’, which may involve complex 
action sequences (e.g. output (3|1|4|2) = output (X)). However, 
extending the repertoire of input-output strategies raises chances that 
such policies will conflict with one another. In living systems, these 
conflicts are resolved in a hierarchical fashion (e.g. throughput (A|a) → 
output(1), throughput (A|B|b) → output(2), throughput (A|B|C|a|b) → 

output(3), throughput (A|B|C|D|a|b|c|d) → output(4)). More complex 
environments therefore require organisms to not only expand their input 
and output hierarchies, but also their throughput hierarchies, in order to 
connect input to output strategies in a non-random (adaptive) manner 
for different combinations of events (i.e. policy selection). In other 
words, organisms develop hierarchies of reference states and corre
sponding substates, which are called ‘goal hierarchies’ (Pezzulo et al., 
2015, 2018). 

Apart from resolving conflicts between opposing policies in (current) 
space, goal hierarchies are used to solve potential conflicts in time. For 
instance, my currentinput state inputt(A|B|C) (= being warm, well fed, 
no predators) seems to match my current goal state throughputt(A|B|C) 
and output pattern outputt(lying down), but this policy may well conflict 
with my anticipatedinput state throughputt+1(D|E|F) (e.g. being cold, 
hungry, lurking predators) and corresponding output outputt+1(heating, 
eating, locomotion) (De Kleijn et al., 2014). To resolve such ‘temporal’ 
conflicts, the same principle of hierarchical control that allows organ
isms to integrate increasing numbers of contextual cues in space can be 
used to integrate contextual cues in time: temporally more distant goal 
states are encoded by control systems that are superposed onto those 
that predict temporally more proximal ones in a hierarchy of part-whole 
relationships (Pezzulo et al., 2018). Errors that are produced relative to 
such predictive goal states (‘prediction errors’) may result in actions at a 
time when such events have not yet taken place (e.g. foraging, stacking 
fat, storing food, finding shelter, building nests, feeding offspring, pre
paring to attack). This involves a time and energy investment that is not 
immediately contingent to the current situation, but serves to keep the 
system stable through change (i.e. ‘allostasis’, see introduction). Thus, 
the ability of organisms to predict events at least some time ahead allows 
them to engage in ‘pre-emptive’ actions that significantly raise their 
chances of survival. The act of anticipating increasingly complex events 
ever more distantly into the future requires ever deeper hierarchies of 
goal states, which integrate across multiple levels of subgoals and cor
responding timeframes to infer ever more global goal states (Pezzulo 
et al., 2015). Such highly integrated and predictive goal states are often 
referred to as ‘world models’, since they may involve quite complex 

Box 1 
On the Structure of Organisms: Network Motifs and Predictive Modeling 

Biological (small world) networks are made up of smaller building blocks (‘subgraphs’) with a relatively large scale called ‘network motifs’. These 
are highly generic pieces of network structure that are observed across different spatial scale levels of biological organization, where they 
support similar functions (e.g. speeding up or slowing down responses, prolonging responses, integrating or coordinating states, etcetera). The 
bow-tie structure is just one of these building blocks, with a relatively large size. When examining their finer substructure, bow-ties consist of a 
family of smaller motifs (Alon, 2007; Araujo & Liotta, 2018; Li et al., 2012). Studies have found a particular abundance of the so called 
‘feedforward loop’ (FFL) in living systems (Alon, 2007). This is a motif that consists of only three nodes (A, B, C) with directed connections 
between them (i.e. A=>B, B=>C and A=>C). Typically, FFLs lack a connection that runs from the output of the motif back to its input (i.e. 
C=>A), i.e. they are open loop control systems. When confronted with a stimulus, such motifs push forward a ‘best guess’ response regardless of 
its outcome, hence the term ‘feedforward’. Because of their ability to forward best guess responses, feedforward motifs have been linked to 
predictive processing (Del Giudice et al., 2018). For instance, the act of eating already increases insulin secretion regardless of actual increase in 
blood glucose concentration, which involves a predictive feedforward system (Marchetti et al., 2008; Pezzulo et al., 2015; Pezzulo et al., 2018). 
In contrast, feedback motifs contain links that run from the output nodes back to the input nodes, i.e. they are closed-loop control systems. Such 
systems represent events that are the consequences of certain actions. For example, feedback systems are involved in measuring actual blood 
glucose concentrations after eating, to provide an update on the predictions made by feedforward motifs (Marchetti et al., 2008). The activity of 
feedforward and feedback systems needs to be balanced in order to have the best of both worlds. In biological systems, FFL motifs represent the 
feedforward (descending) propagation of predictions from higher levels to lower levels within the nested hierarchy, whereas feedback motifs 
represent the prediction error that runs back in the opposite (ascending) direction2. Thus, feedback and feedforward loops run up and down the 
bow-tie hierarchy, respectively, to balance prediction errors with predictions. This balance is what underlies ‘hierarchical predictive coding’ in 
living systems (see next section, Fig. 6). The ubiquity of FFLs in living systems suggests that predictive activity makes up a substantial part of 
these projections. This corresponds to cumulative findings that organisms are not merely reactive agents but rather proactive and ‘predictive’ 
agents that use memories to predict future events. One of the best known examples is anticipatory salivation in classically conditioned dogs, but 
Pavlovian learning and anticipatory responses such as these have been demonstrated in organisms as simple as bacteria (Brembs, 2003; Calvo & 
Friston, 2017; Friston, 2012; Hesp et al., 2019; Mitchell et al., 2009; Tagkopoulos et al., 2008). In short, the nested hierarchical bottleneck 
structure of bow-tie motifs and their constituent submotifs are a scale free feature, which provides living systems with an optimal infrastructure 
to function as hierarchical control systems at every scale level of their anatomy (Friston, 2012; Hesp et al., 2019; Ramstead et al., 2018).  
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anticipatory designs (‘simulations’) of the inner and outer environment 
of the organism, which inspire complex forms of behavior of an 
increasingly anticipatory nature (see Section 2 and below). Of course, 
not all organisms equally express goal hierarchies or world models. The 
height of such hierarchies varies from ‘lower’ to ‘higher’ organisms and 

between organisms of the same species, causing their behavior to vary 
along with it. 

Rather than generating a predictive model for every possible con
tingency, organisms use memories to predict future events (e.g. the 
ringing of a bell causes anticipatory salivation in classically conditioned 

Fig. 6. Organisms as Hierarchical Bayesian Control Systems 
with Nested Modular (folded Bow-Tie) Network Structure. 
Note: Graphical model showing the consensus structure of 
predictive coding in living systems proposed by (Adams et al., 
2013; Friston, 2018; Kanai et al., 2015), which has been 
adapted to account for the nested modular and folded infor
mation bottleneck (bow-tie) network structure that is common 
to all living systems. Figure A. Excerpt of Fig. 5, showing only 
a single input and output hierarchy for visualization purposes. 
Each additional level within the nested hierarchy represents a 
higher level of contextual integration. (Modules of) black 
nodes encode predictive states (setpoints, updated predictions, 
goal states). (Modules of) red nodes encode prediction errors. 
Nested hierarchy of black nodes: predictive (goal) hierarchy. 
Nested hierarchy of red nodes: hierarchy of empirical evidence. 
Blue connections: inhibitory predictions. Red connections: 
excitatory prediction errors. Input hierarchy: predictive hub 
nodes or clusters suppress (explain away) prediction errors 
produced at lower levels within the hierarchy through 
descending and divergent (inhibitory) predictions, reflecting 
top-down control (e.g. by FFL motifs). The difference (predic
tion error) is relayed back to higher level predictive nodes or 
clusters through convergent and excitatory connections, 
reflecting the bottom-up correction of higher-level predictions 
(Bayesian belief updating; adjustment of the model, e.g. by 
feedback motifs). This produces between-level circularly causal 
dynamics (oscillations). Prediction error and predictive nodes 
or clusters also engage in circularly causal relationships within 
the same level of organization, producing within-level oscilla
tions (red and blue arrows, circular shapes). Message passing of 
the input hierarchy is inverted in the output hierarchy. Here, 
top-down prediction errors that were not successfully 
explained away work their way down the hierarchy to supply 
low-level (predictive) setpoints of action primitives, producing 
a concerted response. Incidentally, this makes output 
theory-driven and predictive rather than reactive (Adams 
et al., 2013). Note that hub nodes (or clusters) of prediction 
error clusters (or superclusters) within the input hierarchy act 
as predictive units (empirical priors) at the next level of or
ganization, whereas hub nodes (or clusters) of predictive 
clusters (or superclusters) within the output hierarchy act as 
prediction error units. Input and output hierarchies are con
nected though horizontal connections at different levels within 
the nested hierarchy (grey connections). This creates longer 
and shorter loops that run from input via throughput to output, 
reflecting different degrees of information processing (see 
text). No horizontal connections exist between the input and 
output hierarchies at the lowest level of organization, which is 
an empirical finding (Friston, 2018; Kanai et al., 2015). 
Figure B: Simplified wiring diagram based on connections 
shown in Figure A, with one more level added when compared 
to Figure A, adapted from (Kanai et al., 2015). The nested 
bottleneck (bow-tie) structure is reflected by the copy number 
of nodes (or clusters), which decreases when ascending in the 
hierarchy. Horizontal cross-connections (grey) allow energy to 
travel across loops of different lengths. Short stimulus-response 
loops correspond to simple (and more complex) reflexes and 
instinctual responses, whereas progressively longer loops 
enable habitual and goal-directed behavior. Because of its scale 
invariance, the entire structure can be seen as one giant (pre
dictive) feed-forward motif. See text for further details. C: 
context, S: Sensor, e.g. light receptors, E: effector, e.g. striated 
muscle fiber or mucosal cell, s(t): stimulus, e.g. visual input. r 
(t): (motor or autonomous) response, e.g. striated muscle ac
tion or mucus secretion.   
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dogs). This allows them to restrict predictive modeling to (combinations 
of) events that have some probability of actually occurring (since they 
occurred in the past). The act of prediction is therefore intimately tied to 
the process of learning. Goal hierarchies connect input patterns to 
output patterns by means of non-random (adaptive) connections. The 
act of making non-random connections between the input and output of 
a controls system is called ‘associative learning’. This involves the se
lective strengthening and weakening of connections within throughput 
areas, which may e.g. involve molecular bonds in signaling networks or 
synaptic connections in neural networks. Goal hierarchies develop in the 
course of an individual’s life, as well as in the course of evolution: any 
failure to connect stimuli with adaptive responses during the course of 
their lives (ontogenetic learning) will cause organisms to be eliminated 
through natural selection (phylogenetic learning). The rewiring of 
different parts of such hierarchies has been linked to different types of 
associative learning (Pezzulo et al., 2015, 2018). Short 
stimulus-response loops represent simple autonomous and/or motor arc 
reflexes that allow for basic Pavlovian (stimulus–stimulus) learning and 
instinctive behavior. Longer loops allow for more complex forms of 
learning such as habit learning and corresponding behavior, whereas the 
longest loops involve true goal-directed learning and the formation of 
explicit world models that inspire goal-directed behavior. Goal hierar
chies thus consist of progressively longer loops that run from input to 
output via different levels of integration within the throughput hierar
chy. The various forms of associative learning that take place within goal 
hierarchies are thought to be universal to organisms at any scale level, 
with more (spatially and temporally) integrated forms of learning 
occurring within increasingly ‘higher’ organisms. Pavlovian (predictive) 
learning has been observed to occur within organisms as primitive as 
bacteria (Calvo and Baluška, 2015), whereas goal-directed learning is 
observed within higher vertebrates and some invertebrates (Pezzulo, 
2012). 

Although it is now increasingly recognized that organisms are pre
dictive agents (see Box 1), it remains unclear how exactly predictive 
modeling is implemented in living systems. Having a nested modular 
network structure with information bottlenecks motifs appears to be a 
necessary precondition, but it is not a sufficient one. The graphical 
model of Fig. 4 therefore requires modification to allow for predictive 
coding. To this end, tentative hypotheses have been put forward that are 
based on hierarchical message passing in the human brain (Adams et al., 
2013; Friston, 2018, 2019b; Friston et al., 2017; Kanai et al., 2015; 
Kiebel and Friston, 2009). In Fig. 6, we show the putative wiring scheme 
for hierarchical predictive coding in biological systems (Adams et al., 

2013; Friston, 2018; Kanai et al., 2015), which we adapted to accom
modate a folded information bottleneck structure (a ‘bow-tie’ motif). 
Here, predictive states are encoded by nodes at a higher level of inte
gration, which suppress prediction errors at lower levels of integration 
by means of divergent (disynaptic) inhibitory connections (Fig. 6). The 
difference (prediction error) is conveyed horizontally to the output hi
erarchy as well as projected back upward by convergent excitatory 
connections to correct these higher-level predictions (update the 
models), turning them into posterior expectations (‘empirical priors’). 
This process is called ‘Bayesian belief updating’ and involves the actual 
learning process (i.e. a change in connective efficacy). Thus, higher level 
models attempt to suppress (‘explain away’) prediction errors produced 
by lower-level systems, whereas lower-level systems in turn correct 
higher-level predictions. Such circularly causal relationships produce 
oscillations that are typically observed in neural dynamics. For an 
overview of the mathematics describing the process of hierarchical 
message passing in the context of Bayesian inference, see (Kiebel and 
Friston, 2009). 

The output hierarchy shows a similar but inverted makeup in exactly 
the same way described under the equilibrium setpoint hypothesis, or 
indeed perceptual control theory (Adams et al., 2013; Friston, 2019b). 
Here, prediction errors descend down the hierarchy while diverging 
onto lower-level hub nodes to correct low-level predictive models, 
whereas predictions ascend up the hierarchy while converging onto 
higher-level prediction error units. Thus, prediction errors globally 
ascend and converge within the input hierarchy and descend and 
diverge within the output hierarchy, to eventually supply the setpoints 
of lower-level output primitives (e.g. motor or autonomous reflex arcs). 
Each level within the input hierarchy tries to explain away prediction 
errors produced at lower levels within the hierarchy by means of 
inhibitory (predictive) connections (Fig. 6). If prediction errors cannot 
be suppressed by a simple (less integrated) world model and corre
sponding output produced at the bottom of the hierarchy, they are 
carried up to the next level in an attempt to suppress the errors using a 
more elaborate (contextually more integrated) model (see section 3.5). 
In action control, this process of hierarchical message passing takes 
place in inverted order. Here, prediction errors that have not been 
successfully explained away run down the hierarchy to inspire action. 
Such output may still reduce prediction errors within the input hierar
chy by changing the environment and, hence, the input to the system 
(‘active inference’). 

The process of predictive coding and belief updating as described 
above is thought to reflect hierarchical Bayesian inference in biological 

Box 2 
On the Function of Organisms: Active Inference and the Free Energy Principle 

According to the free energy principle, the dynamics of biological systems follows from the basic laws of thermodynamics, i.e. organisms must 
find their lowest possible energy state despite a continuous influx of energy. In this view, living systems are statistical engines that encode 
models of the world simply by responding to their input (Friston et al., 2013). The difference between the actual input to the system and some 
predictive model of the world corresponds to the prediction error of the system, which under some restrictions corresponds to an information 
theoretic quantity called ‘variational free energy’. Low prediction error corresponds to a low number of alternative states that an organism 
occupies on average and, therefore, a more stable, low-energy state that has been equated to ‘homeostasis’ (Friston, 2012). Suppressing pre
diction error is therefore an imperative for all living systems, since it amounts to finding a stable low-energy state. Organisms generally strive 
towards this overarching goal by generating world models with multiple levels of model complexity and by testing these models against 
incoming input by performing actions (‘active inference’). Such actions change the environment of the organisms, which produces a novel input 
that is used as a test on model evidence. In other words, organisms act to maximize sensory evidence for their own predictions: they are 
‘self-fulfilling prophecies’. Organisms cannot only reduce prediction errors by changing the environment through action in order to alter their 
percepts (‘changing your actions’, as in perceptual control), but also by updating their world models to produce a better fit with their input states 
(‘changing your mind’): a process called ‘Bayesian belief updating’ See text for further details. Although originally formulated within the context 
of human brain function, the active inference principle has been generalized to involve living systems across multiple spatiotemporal scale levels 
of organization, varying from microbes and brains to social systems (Ramstead et al., 2018). According to active inference theory, organisms 
‘are’ embodied and situationally embedded (Bayesian) models of the world and natural selection is nature’s way of performing Bayesian model 
selection (Hesp et al., 2019). For equations describing the free energy principle and the process of active inference, see (Friston, 2010, 2012)  
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systems, and can be seen as a general model for information processing. 
It is thought that similar principles apply in any organism, from microbe 
to man (Friston, 2012, 2018; Hesp et al., 2019; Ramstead et al., 2018). 
For instance, membrane receptors and second messenger pathways may 
represent posterior expectations that are informed by genetic or 
biochemical priors (setpoints) at different levels to produce output. Such 
systems may produce oscillatory dynamics similar to those observed in 
neural dynamics (Friston, 2012). As can be seen in Fig. 6, information 
bottleneck motifs can be observed at the level of individual nodes, 
clusters, superclusters and within the network structure at large, i.e. it is 
a scale invariant feature. As a consequence, the organism itself can be 
modeled as one giant feedforward loop motif (Box 1), which produces 
predictive output that feeds back into the organism through the envi
ronment, providing an update on predictions (‘active inference’, Box 2). 
This means that Fig. 1 should be adapted to contain an arrow running 
from node A directly to node C. 

At this point, it is important to emphasize the difference between 
traditional notions of hierarchical Bayesian inference in statistics and 
hierarchical inference as it takes place in living systems. First, statistical 
models usually involve a single hierarchical generative model. In living 
systems, the architecture of generative models acquires two streams: a 
sensory or input stream that controls input while is primarily concerned 
with inferring “what the world is doing” and an executive or output 
stream that tries to infer "what the organism is doing" (either in terms of 
motor behavior or autonomic function): the dual hierarchy in Fig. 6. 
Input hierarchies are involved in hierarchical perceptual inference, i.e. 
producing increasingly comprehensive perceptual models that try to 
explain lower-level sensory events (Friston et al., 2006). Output hier
archies on the other hand are involved in hierarchical action control, i.e. 
decoding high-level abstract models within the information bottlenecks 
of organisms into detailed action sequences produced by action primi
tives located at the base of the output hierarchy. Unexplained (residual) 
prediction error thus moves down the hierarchy to eventually supply the 
setpoints of low-level action primitives and pose as complex ‘output 
commands’. Meanwhile, predictions with respect to the hidden causes of 
sensory events that take place in motor (e.g. proprioceptive) or endo
crine (e.g. interoceptive) structures run upward in this hierarchy, in an 
attempt to suppress prediction errors. This counterstream represents 
feedback on the correct execution of motor or endocrine actions, based 
on the organism’s models of what it is doing (i.e. based on the inferred 
sensory states of its output organs). When predictions with respect to the 
actual state of output organs (represented by bottom-up predictions) 
matches the output command (by top-down prediction error), predic
tion errors are fully suppressed and the execution of the output pattern 
comes to a halt. (Friston, 2019b). This dual aspect of hierarchical 
inference is emphasized by referring to nested hierarchical bow-tie 
network architectures (with small-world characteristics). This means 
that "bow-tie" should be read as a dual-aspect spatial hierarchy 
responsible for making inferences both about hidden states of the world 
and actions upon those states, respectively. 

Second, models of hierarchical (Bayesian) inference in statistics are 
unfamiliar with the concept of goal-directedness (agency). This concept 
is still a topic of debate (Walsh, 2015), yet seems to be clearly definable 
from the perspective of organisms as hierarchical control systems. As 
observed in Section 2, perceptual control theory already equated the 
reference signal (setpoint) of control systems with goal-directedness and 
the hierarchical organization of reference signals with the formation of 
more complex goal states (Powers, 1973b). Similarly, model-based 
control theory involves organisms constructing elaborate hierarchical 
models of the world that serve as predictive goal-states that are encoded 
by intermediate throughput areas (Solway and Botvinick, 2012). In 
active inference theory, goal states align with so called empirical priors. 
These are nodes or clusters that encode prior beliefs that have been 
updated by sensory input, i.e. priors at intermediate levels within a hi
erarchical model (the black nodes and clusters in Fig. 6). Such nodes or 
clusters encode the states, or sensory information sampled, that the 

organism a priori prefers to occupy or sample, after having been updated 
by a certain input (red nodes in Fig. 6). Goal states can therefore be 
construed as ‘posterior expectations and beliefs about controllable but 
hidden states of the world’. The scale free nature of living systems makes 
sure that empirical priors form nested hierarchies, with higher-level 
clusters of priors reflecting increasing amounts of contextual integra
tion of preferential or predictive states (i.e. from individual setpoints to 
complex world models). In other words, the nested modular hierarchy of 
black nodes and clusters in Fig. 6 (empirical priors) reflects a hierarchy 
of goals and corresponding subgoals, down to the level of individual 
setpoints. Similarly, the nested modular hierarchy of red nodes and 
clusters in Fig. 6 (prediction error units) represents a hierarchy of 
empirical evidence at different levels of contextual integration, which is 
aligned along the various levels of the goal hierarchy to provide an 
update on these models. Thus, instead of being fixed and given, goal 
states are progressively inferred within the narrowing bottlenecks of 
bow-tie structures that form a smooth continuum between input- and 
output hierarchies (Fig. 6A). These structures are involved in inferring 
“what the organism should be doing”, i.e. hierarchical goal-setting. As a 
result, we necessarily introduce the notion of ‘hierarchical Bayesian 
control systems’. Such systems combine hierarchical perceptual infer
ence (input) with hierarchical goal inference (throughput) and hierar
chical action control (output), to eventually reduce overall levels 
prediction error through active niche exploration (‘active inference’). 

This concludes our description of how goal hierarchies are con
structed in living control systems. Below, we will examine which global 
types of goal states are produced within deep goal hierarchies and 
discuss their putative positions within a nested hierarchy of network 
clusters. We will then show how such hierarchies collapse in a top-down 
manner under rising levels of stress, leading to corresponding changes in 
behavior. 

3.4. A taxonomy of goal states 

The central tenet of hierarchical Bayesian inference in biological 
networks is that organisms try to infer the hidden causes of their sensory 
input (effects) and construct predictive models to do so. The difference 
(error) between these predictions and the perceived events is used 
simultaneously to inform behavior (output) and to adjust the model 
(Friston, 2012). From both observational data and theoretical consid
erations, organisms are thought to construct at least two global types of 
predictive models (goal states) at the top of their goal hierarchies. One of 
these involves a model of the organism itself (Limanowski and Blan
kenburg, 2013; Moutoussis et al., 2014). Since any organism has a body, 
it will consistently receive input that can be explained as produced by or 
originating from within that body. Such signals may involve both 
changes in the internal state of the organism (e.g. changes in internal 
glucose or acidity levels) as well as changes in its external environment 
as a result of actions produced by the organism itself (e.g. chemicals 
secreted or vibrations produced by the organism itself). Through hier
archical Bayesian modeling, organisms will eventually infer the hidden 
common causes behind these various types of signals (effects) and, 
eventually, the ‘self’ as a single common cause. Prediction errors relative 
to such ‘self-models’ produce behavior that shows hints of a sense of 
agency (e.g. a differential response to signals produced by the organism 
itself rather than its environment). The principle of hierarchical 
Bayesian inference therefore predicts that self-models are produced to 
varying degrees in any organism, from microbe to man. Most organisms 
have different sensory systems for monitoring their inner and outer 
worlds. ‘Exterocepsis’ is used for sensing external events and usually 
includes ‘the 5 senses’, i.e. vision, smell, hearing, touch and taste. 
Interocepsis is used to monitor internal events and involves sensory 
streams from smooth muscles, endocrine glands and other organs. Pro
priocepsis is used to relay the state of the world in between the interior 
and the exterior of the organism and involves data streams from striated 
muscles (e.g. muscle spindles). Internal/self-models rely 
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disproportionally on sensory information derived from internal systems 
(e.g. interocepsis and propriocepsis) (Limanowski and Blankenburg, 
2013; Moutoussis et al., 2014). Since output hierarchies are primarily 
involved in inferring ‘what the organism is doing’ and rely dispropor
tionally on internal sensory streams to do so, internal/self models likely 
form a continuum with the top of the output hierarchies of bow-tie 
structures (Figs. 6 and 7). This at least seems to be the case in the 
human brain (Seth and Friston, 2016; Smith et al., 2019a; Thornton 
et al., 2019). 

Similarly, organisms can infer the (hidden) common causes of effects 
(input) produced by factors outside of their own body (Baker et al., 
2017; Limanowski and Blankenburg, 2013; Ondobaka et al., 2017). 
Apart from abiotic factors such as rain or snow, such external factors 
may involve models of other organisms and their intentions (e.g. pred
ator, prey, friend or rival). Such social models are produced to varying 
degrees in any organism. Prediction errors relative to these models 
inspire social behavior, which reflects some sense or knowledge of the 
agency of other organisms, i.e. their existence, social roles, needs and 
intentions. Such behavior can be found already at the level of bacteria 
(e.g. quorum sensing in biofilms; Lyon, 2015). External/social models 
predominantly rely on sensory information derived from input organs 
(e.g. exterocepsis) to derive the state of the external world (Smith et al., 
2019b; Moutoussis et al., 2014). Such information is then passed on to 
internal systems to formulate an adaptive response and monitor its 
execution. Meanwhile, external/social models control the output of the 
same external systems in a hierarchical manner (i.e. attentional biasing 
of exteroceptive organs). Since input hierarchies are concerned with 

inferring what the external world is doing, it is therefore likely that 
external/social systems form a continuum with the top of the input hi
erarchies of bow-tie structures whilst being strongly connected to 
internal/self systems (Fig. 7). Again, this at least seems to be the case in 
the human brain (Seth and Friston, 2016; Smith et al., 2019a; Thornton 
et al., 2019). 

As observed in section 3.3, the complexity of a goal hierarchy may 
vary across individuals and species depending on environmental 
complexity, and the behavior of their owners varies along with it. We 
therefore predict that organisms that display a greater degree of agency 
should show a local extension of their nested hierarchical trees to encode 
more explicit self-models, i.e. involve the integration across a larger 
number of network communities. This hypothesis can be tested e.g. by 
examining organisms that differ in the degree to which they respond 
differentially to (chemical or physical) signals produced by themselves 
rather than their environment, or the degree to which they show signs of 
(self-referential and goal-directed) behavior (agency). Such organisms 
should have larger scores on measures of hierarchical depth within 
specific parts of their networks (see Discussion). Similarly, we propose 
that social behavior, when compared to solitary behavior, should 
involve some local extension of their hierarchical trees to encode more 
explicit social models. Such models may become especially intricate in 
highly sociable species that spend a lot of time gauging the social roles 
and intentions of their community members (e.g. some birds, mammals 
and primates). Such organisms are constructing world models of the 
world models of other organisms (i.e. recursion and reciprocity; Friston 
and Frith, 2015). These hypotheses can be tested by comparing the 

Fig. 7. Putative Relative Positions of High-level Goal States Within Living Network Systems. 
Note: Schematic view of the way in which higher level (‘normative’) world models may develop within a hierarchy of goal states through the functional integration 
across self and social models. External (social) models predominantly involve inference on exterocepsis and may hence form a continuum with the input-part of a goal 
hierarchy. Internal (self) models predominantly involve inference of interocepsis and propriocepsis and may hence form a continuum with the output part of a goal 
hierarchy. Logically, cross-cutting (normative) models that integrate across internal and external world models and corresponding time domains form the top of the 
goal-hierarchy (i.e. the highest level of inference). For visualization purposes, no differentiation is made between predictive and prediction error nodes or clusters 
(for details on this, see Fig. 6). Individual nodes in this figure may represent both single nodes and clusters, conforming to the scale invariant principle. 
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hierarchical network structure of solitary and social species, or social 
species that differ in their level of sociability (see Discussion). A similar 
argument can be made for the ability to predict events ever more 
distantly into the future. We predict that temporally more distant goal 
states require deeper hierarchies of control i.e. the integration across a 
larger number of network communities. This can be seen as a hierar
chical extension of interior (self-referential) and/or exterior (social) 
models to accommodate long-term predictions with respect to self 
and/or others. Such anticipatory actions may be aimed at a future 
version of the individual itself or some external agent, rather than the 
current self or the current other. This hypothesis can be tested by 
comparing the hierarchical depth of network (bow-tie) structure be
tween individuals or species that differ in their ability to anticipate 
(self-referential and social) events (see Discussion). 

In hierarchical Bayesian inference, each superordinate level per
forms a form of ‘pattern recognition’ on events that take place at sub
ordinate levels. The superordinate level thus encodes a more generalized 
and parsimonious (abstract) model of events that happen below it. Such 
higher-level generative models go well beyond the lower-level data that 
helped to spark their existence: they may involve quite creative designs 
that may autonomously inform behavior (Tenenbaum et al., 2011). 
When this principle is applied systematically to goal states, something 
interesting happens. As mentioned, organisms produce a hierarchy of 
goal states that eventually involves a global division between internal 
(self-referential) and external (social) goal states, both of which can be 
set proximally or more distally in time. Logically then, the hierarchical 
integration across goal states can be pushed one level further, involving 
an additional level of inference across these two global goal states. This 
produces an overarching third series of goal states that are common to 
both the organism itself and its (social) environment, across timescales 
(Fig. 7). 

Such models transcend the level of the individual organism, its im
mediate (social) environment, as well as the immediate moment. In 
other words, such goal states define (social) laws, rules or standards that 
hold across different individuals, social groups and timescales (Constant 
et al., 2019; Toelch and Dolan, 2015). Thus, hierarchical Bayesian 
inference predicts that, eventually, organisms produce goal states that 
they consider to have general validity for everyone across (infinite) time. 
Prediction errors that are produced relative to such ‘normative’ goal 
states may involve a time and energy investment that is not immediately 
contingent to the interests of the organism itself. Rather, such behavior 
is aimed at striking a balance between the short-term and long-term 
interests of individuals and ever more distant social groups (including 
future generations), i.e. to promote global rather than local stability. 
Individuals that follow such goals will at times make decisions that favor 
the (long-term) interests of others rather than themselves, i.e. they will 
show altruistic behavior. Additionally, such goals may cause some 
members of a group to punish themselves or others for social norm 
violation (Fehr and Schurtenberger, 2018). Altruistic and law-abiding 
forms of behavior have been observed in a variety of (higher) organ
isms (e.g. Bekoff and Pierce, 2009). We expect such goal states to 
represent the highest level of hierarchical Bayesian inference and, 
therefore, the highest level of integration within a nested hierarchy of 
network clusters. In other words, they truly represent our ’highest 
goals’. 

This prediction can be tested by examining organisms that differ in 
the degree to which they engage in activities that are aimed at pro
moting global and long-term rather than local and short-term stability of 
individuals and groups (e.g. mediation versus social polarization, fair
ness versus unfairness in the sharing of energy and resources, punish
ment for social norm violation versus laxity, altruistic versus selfish 
behavior, transpersonal identification versus nepotism, transgenera
tional identification versus generational individualism, etcetera). Com
binations of such functions are typically (but not exclusively) found in so 
called ‘higher organisms’, and should link to measures of hierarchical 
depth in nested modular biological networks (see Discussion). Thus, 

hierarchical Bayesian inference may explain why higher organisms tend 
to have bigger throughput areas (e.g. the giant nucleus of eukaryotic 
versus prokaryotic cells, or the frontal and anterior extensions of the 
brains of higher primates): such hierarchies are required to accommo
date more encompassing world models. Despite such extensions, how
ever, the basic principles that govern behavior in higher organisms 
appear to be the same as in woodlice: action sequences are produced that 
aim to minimize prediction error relative to world models with different 
degrees of model complexity (Botvinick and Weinstein, 2014; Friston, 
2012). 

In humans, empirical studies of goal states have produced a hierar
chical taxonomy that eventually involves the global goals of agency 
(connecting with the self), communion (to connect with a local social 
group) and meaning (connecting across spatial, temporal and social 
barriers; Talevich et al., 2017). These global goals are closely related to 
Maslow’s hierarchy of needs (with multiple levels of self-actualization, 
social belonging and transcendence) (Koltko-Rivera, 2006). Such goal 
states have a strong resemblance to internal (self), external (social) and 
cross-cutting (normative) goal states as predicted by hierarchical 
Bayesian inference. By now, the human mental phenotype has been 
mapped quite well with respect to the presence of normative functions 
and individual differences in the degree to which subjects score on these 
phenotypical dimensions can explain differences in normative or moral 
behavior (e.g. Koltko-Rivera (2006); Stankov (2007); von Collani and 
Grumm (2009)) as well as individual differences in brain structure and 
function (see below). The existence of such domains of functioning has 
been eschewed by scientists for quite some time because of its inherently 
moral (or even religious) nature. Nevertheless, such domains are pre
dicted by the principle of hierarchical Bayesian inference and supported 
by evidence from various domains of science. 

In the active inference literature, goals are prior beliefs about 
controllable factors in the environment that rest upon each organism’s 
place in a particular eco-niche, with each niche showing varying degrees 
of pro-sociality. This leads to the notion of variational eco-niche con
struction, whereby each individual builds its own generative models 
that can be shared among other members of its family or conspecifics 
(Constant et al., 2018; Veissie ̀re et al., 2019). The notion of higher 
(interpersonal) goals amounts to a shared generative model or narrative 
that ensures the members of a group can predict each other - and thereby 
minimize their prediction errors. In humans, the need to exchange such 
higher-level insights gives rise to our scientific, moral and legal in
stitutions, which may aid in the attempt to eventually construct a 
globally held world view that serves to optimally inform human 
behavior. Below, we will discuss how stress causes organisms to 
downgrade on contextual processing (model complexity) and discuss its 
impact on (human) behavior. 

3.5. Stress in hierarchical Bayesian control systems 

The hierarchical Bayesian control systems perspective on living or
ganisms allows for a clear definition of ‘stress’ (Peters et al., 2017). 
Stress can be defined as the difference between some desired or antici
pated state (a setpoint, goal state, or world model) and the actual input 
state of an organism. Mathematically, this can be framed as the differ
ences between empirical priors and posterior expectations, i.e. the 
overall level of prediction error. Likewise, the stress response can be 
defined as the behavior that follows these prediction errors (note that 
according to this definition, every prediction error is a form of stress, 
and any response can be defined as a stress response). (Stress) responses 
serve to counter the perturbation of a control system and allow the 
system to return to a more stable state. Since organisms occupy a wide 
range of environmental niches in which they face a multitude of unique 
stressors (e.g. specific chemical constitutions, rivals or predators), stress 
responses are in many cases unique and involve unique messaging 
pathways. Some stress responses are more general, however, such as the 
stringent response in bacteria when subjected to nutrient deprivation 
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(Boutte and Crosson, 2013), or the SOS response in case of DNA damage 
(Baharoglu and Mazel, 2014). Such ‘general stress responses’ are 
mounted in a similar way across species, regardless of the specific 
stressor the organism encounters (e.g. starvation, drought, heat, cold, 
acidity, salinity, DNA damage, social stress) and involve the up- or 
downregulation of a few key transcription factors that have been tightly 
conserved throughout evolution (de Nadal et al., 2011d; López-Maury 
et al., 2008; Lyon, 2015; Marles-Wright et al., 2008; Nagar et al., 2016; 
Storz and Hengge, 2010). Whereas the upstream changes in transcrip
tion factors that occur during general stress responses show a clear 
overlap between species, however, the downstream changes appear to 
be more species-specific. Additionally, general stress responses have 
only been characterized in a small number of model organisms, so it is 
uncertain whether they occur within all species of bacteria, or indeed in 
other species (Gottesman, 2019). At first glance, then, the sheer het
erogeneity of stress responses seems to deny the existence of a truly 
‘general stress response’. Despite such heterogeneity, however, recent 
studies found evidence that some aspects of the stress response are 
indeed universal across species, whether they be bacteria or plants, 
mammals or humans. This condition- and species agnostic response can 
be quantified in terms of the overall amount of regulatory activity that 
takes place under stressful conditions. Studies show that bacteria that 
are challenged with an evolutionary familiar stressor show subtle re
sponses of gene transcription, whereas bacteria that are challenged with 
a relatively unfamiliar stressor (e.g. an antibiotic) show larger and 
seemingly more chaotic responses (Jensen et al., 2017). More specif
ically, stressed bacteria express a larger number of different genes with 
increasing amplitudes, while gene expression is becoming increasingly 
uncoordinated as the challenge endures. These changes have recently 
been quantified in terms of entropy, which is a well-established infor
mation theoretic quantity of disorder (i.e. H = ln(|M|) where M is the 
(permuted) covariance matrix containing gene co-expression strengths) 
(Zhu et al., 2020). Rising entropy levels in the signaling pathways of 
bacteria successfully predict bacterial fitness in terms of growth rate 
(stagnation) and survival (death) under stressful conditions. This is true 
regardless of the specific environmental conditions, the types of genes 
that are involved and the strain or species of bacterium under study. 
Rising entropy levels have been used to predict the success of antibiotic 
therapy for any type of antibiotic in any strain of bacterium, which is far 
more efficient than current gene panels that rely on specific gene 
expression profiles in specific micro-organisms (Zhu et al., 2020). The 
increased amount of disorder in gene expression profiles that is observed 
in stressed bacteria has been explained in terms of a loss of regulatory 
influence (‘dysregulation’), which normally coordinates dependencies 
between genes and produce some degree of order. The loss of such co
ordination then causes gene expression levels to vary independently and 
more randomly. In other words, rising levels of entropy seem to signal a 
regulatory overload, which is predictive of a loss of fitness. 

The predictive power of (permutation) entropy or similar measures 
generalizes well beyond bacteria. It has been used to predict behavioral 
changes of a large number of different classes of organisms under 
stressful conditions, including plant species (Sun et al., 2010), fish and 
other aquatic organisms (Bae and and Park, 2014; Eguiraun et al., 2014), 
insects (e.g. Liu et al., 2011), chickens (Marıa et al., 2004,), quails, rats, 
pigs and primates, to name but a few (e.g. Asher et al., 2009). Inter
estingly, increased disorder has been discovered in timeseries of human 
behavior under stressful conditions. Human inner experience and overt 
behavior (the mental phenotype) can be measured using experience 
sampling methodology (ESM): a technique that involves rating multiple 
phenotypical items several times a day for several weeks or months to 
produce timeseries. When stress levels increase, typical changes can be 
observed in such timeseries that involve increased levels of variance, 
increased amplitudes, increased anticorrelations between opposing 
mental states (e.g. happiness and sadness), increased temporal auto
corrrelations and a slow recovery from external perturbations (van de 
Leemput et al., 2014). Together, these changes signal the phenomenon 

of ‘critical slowing down’ (CSD), which is a highly generic state of 
network systems that are poised on the brink of a ‘tipping point’(a 
sudden transition from one state of the system to another). Just before 
the onset of such phase transitions, the systems starts to show erratic 
behavior (CSD). CSD is a generic characteristic that can be used as an 
early warning sign to predict the occurrence of tipping points in 
non-living as well as in living systems (Veraart et al., 2012; Scheffer 
et al., 2012). In humans, CSD has been used successfully to predict the 
onset of a mental disorder (major depression) at least 3 months in 
advance (van de Leemput et al., 2014). As is evident from their 
respective definitions, CSD is actually synonymous with a (transition 
towards a) state of high (permutation) entropy. Entropy is a much more 
general term, however, which can be quantified from timeseries data 
using a single parameter instead of three terms or more (H = ln |Mp|, 
where |Mp| denotes the determinant of a graphical lasso regularized 
empirical correlation matrix), or even from a single timepoint (i.e. Hstp =

ln (σ2), where σ refers to the measured variance in the expression of 
recorded variables for a single timepoint) (Zhu et al., 2020). In short, a 
universal stress response can be formulated not by looking at the spe
cifics of regulatory activity in living systems, but rather at the total 
amount of disorder observed in hierarchical message passing within 
organisms (as measured e.g. by a bacterial transcriptome or brain ac
tivity). Rising levels of entropy have been proposed to result from a loss 
of ‘regulatory connections’, which normally coordinate (e.g. synchro
nize) the different elements of the system and produce order (Zhu et al., 
2020). High levels of permutation entropy can serve as a generic early 
warning sign for sudden state transitions reflecting a failure of control, 
which signal either stagnant growth, disease or the death of an organism 
(i.e. a loss of homeostasis). We will now examine whether the overt 
behavior of organisms under high levels of stress shows universal 
changes as well, in order to derive a general theory of stress and the 
stress response in living control systems. 

When studying the overt behavior of organisms under high levels of 
prolonged stress, features emerge that appear universal to all organisms. 
Whereas short or sublethal stress levels seem to speed up metabolism, 
promote motility (fight or flight) and enhance exploration tendencies 
(migration), social activity (establishing hierarchy), the exchange of 
genetic material (procreation) and parental investment in a wide range 
of organisms, prolonged and (near) lethal stress levels induce behavioral 
changes that involve a down-regulation of metabolism (e.g. bacterial 
stasis, sporulation, hibernation), reduced motility (mobility or migra
tion), reduced sociability, a halt on reproductive activity, an increase in 
(DNA) repair activity or sleep, and a tendency to neglect (abandon, or 
even eat) offspring (Wingfield et al., 1998, 2003, Ruf and Geiser, 2015; 
Hausfater and Hrdy, 2017; Del Giudice, 2020). Such ‘emergency life 
history stage responses’ generally economize on long-term, (pro)social 
and/or reproductive activities in favor of short-term, self-repairing and 
self-preserving activities. In more consize terms, severe stress is said to 
cause organisms to shift away from ‘slow’ policies (i.e. long-term pro
social activities and parental investment) and towards ‘fast’ policies (i.e. 
short-term and self-preserving activities) (Del Giudice, 2020). Such 
shifts in behavioral policies are especially evident in social species 
(when compared to solitary species), since these normally devote a 
significant amount of their time in building social hierarchies and 
parental investment (Del Giudice et al., 2015). Nevertheless, even bac
teria are known to cut down on ‘social’ and reproductive activities in 
response to a (near) lethal stressor, e.g. when shutting down horizontal 
gene transfer, halting cell division or engaging in sporulation (Lyon, 
2015, Meeske et al., 2016). It therefore seems that organisms upregulate 
complex behavioral policies under intermediate levels of stress but 
abandon such policies when stress levels approach near lethal levels. 
Such behavioral changes have been explained in terms of ‘allostatic 
overload’, which refers to the situation where the regulatory capacity of 
a control system is overtaxed by environmental perturbations, i.e. where 
regulatory work increases to the point where energy demand exceeds 
energy supply (Wingfield et al., 1998, 2003, McEwen and Wingfield, 
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2003). In such cases, organisms need to cut down on computationally 
expensive regulatory activities in order to save energy and resources. 
Interestingly, scholars have linked the expenditure of energy and re
sources to the hierarchical depth of information processing (Hermans 
et al., 2014; Goelzer and Fromion, 2017; McEwen and Wingfield, 2003): 
higher (’allostatic’) levels of hierarchical control systems that inspire 
more complex forms of behavior demand more energy, whereas lower 
(’homeostatic’) levels that control relatively simple behavior require 
less regulatory work and demand less energy (see introduction). Thus, 
organisms appear to abandon hierarchically higher levels of processing 
in favor of lower processing levels when confronted with allostatic 
(higher regulatory) overload (Hermans et al., 2014). This has been 
demonstrated experimentally in different organisms including humans, 
e.g. with human behavior falling back from goal-directed to habitual 
behavior under severe levels of stress (Schwabe and Wolf, 2011; Goelzer 
and Fromion, 2017; Van Oort et al., 2017). In the previous section, we 
saw that self models, social models and transcendent (normative) 
models involve the highest levels of contextual integration (in a spa
tial/social and temporal sense) and inspire complex forms of 
goal-directed behavior, including moral decision making. Consistent 
with the theory of allostatic overload, severe stress is known to nega
tively affect prosocial behavior and moral decision making (although 
moderate levels of stress may actually increase prosocial behavior, see 
below) (Lee and Yun, 2019; Mendez, 2009; Starcke et al., 2011; Youssef 
et al., 2012). Extreme stress therefore seems to affect policy selection as 
a function of contextual integration, i.e. organisms take lesser amounts 
of contextual information into account when formulating a response. 
Such decontextualization allows them to revert to more basic policies 
that demand less energy. In short, increased levels of entropy in hier
archical message passing within living systems are already suggestive of 
a loss of integrative control under severe levels of stress, but this notion 
is further backed by studies of the overt behavior of stressed organisms 
that independently point towards a reduction in model complexity and 
corresponding shifts in policy selection. We therefore propose that 
extreme stress causes a top-down collapse of goal hierarchies, i.e. a loss 
of hierarchical depth. This forces organisms to downgrade from 
high-level (functionally integrated) goal states to lower-level (func
tionally segregated) goals and corresponding behavioral policies. The 
universal presence of this principle suggests it has cornerstone value in 
securing survival ‘when the going gets tough’. 

For a mechanistic account on how this might work, it is worthwhile 
to examine the biophysics of stress in hierarchical (Bayesian) control 
systems. In such systems, prediction errors are used in two distinct ways 
(Fig. 6): to update Bayesian beliefs by resetting priors (changing your 
mind) and to induce an output sequence or stress response to reduce the 
error via the environment (changing your actions). Lower level policies 
(e.g. walking) are allowed to run freely until prediction errors are pro
duced within the input hierarchy (e.g. stumbling across some unforeseen 
object; Scafetta et al., 2009). If error signals cannot be sufficiently 
suppressed by a simple, straightforward response generated at some 
lower level of the hierarchy (e.g. side- stepping), the residual error is 
‘escalated upward’ into the hierarchy to update more comprehensive 
world models and produce a corresponding, more complex output (e.g. 
walking around the object; de Kleijn et al., 2014d). Thus, prediction 
errors pass a hierarchical succession of goal states (increasingly complex 
generative models) and corresponding behavioral strategies until they 
are suppressed. Such elaborate strategies may eventually suppress pre
diction errors in ways that simpler forms of behavior cannot (e.g. by 
successfully walking across the object, reaching the top of a fruit tree, or 
climbing a social hierarchy). This may explain why intermediate levels 
of stress initially cause organisms to display more complex behavioral 
strategies. The vertical accumulation of prediction error can be thought 
of in terms of a loss of control over free energy. In the Bayesian inference 
literature, rising levels of free energy are usually associated with in
creases in entropy and a concomitant loss of thermodynamic and 
computational efficiency. The use of higher order (more complex) 

strategies is therefore likely to coincide with rising levels of (permuta
tion) entropy in measures of hierarchical message passing and overt 
behavior. 

Since any hierarchy of control systems is finite, however, prediction 
error signals may accumulate upwards across multiple levels of control 
until the top of the hierarchy is reached. At that point, the organism has 
exhausted its hierarchy of goal states and corresponding policies (i.e. 
even complex strategies are ineffective at suppressing prediction errors). 
In such cases, vertically accumulated prediction errors activate a small 
number of hub structures located near the top of the (goal) hierarchy 
(the knot of the bow-tie). These hubs maintain many long-distance 
connections with other network clusters and subclusters in the 
network, thus representing the highest level of integration within the 
network structure at large (Figs. 5–7). From simulation studies in sta
tistical physics, it is known that the highest degree nodes in a network 
have the highest levels of energy dissipation, corresponding to highest 
energy demand (Gosak et al., 2015). The fruitless pursuit of high-level 
goal states and corresponding behavioral policies may therefore cause 
these structures to be flooded with ascending prediction error signals, to 
the point where energy demand exceeds energy supply. When this 
happens, these high-level hub structures will overload and fail (Gosak 
et al., 2015; Stam, 2014). This ‘allostatic overload’ has been experi
mentally confirmed to coincide with increased levels of permutation 
entropy specifically for such hub nodes (Sun et al., 2010). Since 
high-level hub structures normally integrate information streams across 
a large number of subordinate clusters (functional integration), their 
shutdown causes a shift in the balance between functional integration 
and segregation of network clusters in favor of functional segregation 
(Tononi et al., 1994). This corresponds to a collapse of the nested 
modular goal hierarchy: more encompassing goal states effectively 
‘decompose’ into their constituent components, inducing a corre
sponding change in behavior. As a result, the subordinate network 
clusters will no longer be functionally connected and start to operate 
independently (functional segregation). This loss of integrative control 
and the ensuing uncoordinated activity of subordinate modules will add 
significantly to increased scores on (permutation) entropy. 

To be clear, we wish to emphasize that hub overload and failure is 
most likely to involve a functional shutdown of high-level predictive hub 
structures and decreased functional connectivity, rather than a struc
tural loss of hubs and a loss of structural connectivity (i.e. failing hub 
structures still remain physically in place). At least, this seems to be the 
case in acute forms of stress. In chronic forms of stress, studies show that 
even a loss of structural connectivity may occur (e.g. synaptic pruning), 
which may involve the active degradation of maladaptive world models 
(goal states and corresponding policies) by means of substances such as 
glucocorticoids (Peters et al., 2017). We predict that the collapse of goal 
hierarchies is a function of node degree: the most integrative goal states 
are the first to go, but subordinate levels with lesser-degree hubs and 
corresponding subgoals may follow depending on the amount of accu
mulated stress (prediction error). Severe stress may therefore cause a 
graded disintegration of a nested hierarchy of goal states across several 
levels. Like military command collapsing in a top-down fashion (gen
erals first, then colonels, lieutenants, higher officers, etcetera), allostatic 
overload may dissolve goal hierarchies, leaving only the local troops and 
the odd sergeant major to take care of the problem (Fig. 8). This may 
explain why severe levels of stress eventually cause organisms to display 
increasingly primitive forms of behavior. This hypothesis can be tested 
by examining measures of hierarchical depth of (functional) network 
structures in relation to policy selection and behavioral complexity at 
different levels of stress (see Discussion). 

When higher-level hub structures overload and fail, they lose their 
influence as empirical priors that are important in maintaining the 
balance between top-down prior beliefs and bottom-up sensory evidence 
(Fig. 6). The overall amplitude of prior signals or prediction errors is 
often quantified in terms of ‘precision’, which refers to the inverse 
variability (dispersion) of a probability distribution. In other words, 
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precision scores the ‘confidence’ in a Bayesian belief or prediction error. 
Increasing the gain of prediction units means that these priors are 
selected, causing them to more strongly suppress prediction errors and 
making them more resistant to belief updating. Conversely, increasing 
the connective efficacy (amplitude or ‘gain’) of prediction error units 
means that the associated prediction errors are selected, enabling them 
to preferentially induce belief updating higher in the hierarchy. This 
leads to the notion of precision at different levels of the hierarchy, whose 
balance is crucial for determining the relative influence of top-down 
prior beliefs relative to bottom-up sensory evidence. We can therefore 
think of stress as reducing prior precision and rendering the organism 
more exposed to belief updating based upon immediate sensory evi
dence: stress alters the connective efficacy of priors and prediction error 
units, thereby sequestering them from other levels of the hierarchy. This 
collapse can either be reversible, e.g. reflecting modulatory control of 
connection strengths in acutely stressful situations. Alternatively, it 
could be mediated by long-term changes in connective efficacy or a loss 
of connections per se, which have been reported in neural systems after 
chronic stress3 (e.g. McEwen et al., 2015). 

In short, stress seems to change behavioral policies according to a 
hierarchical principle, i.e. increasingly less contextual cues are used to 
inform behavior, suggesting a top-down collapse of goal hierarchies. 
This ‘decontextualization of behavior’ has several short-term advan
tages. First, organisms will spend less energy and resources on reaching 
long-term and complicated goals, which allows them to endure current 
unfavorable conditions for longer periods of time. Second, the bypassing 
of higher-level systems reduces the path length of the network, allowing 
signals to travel from input to output structures across shorter distances, 
producing faster responses (computationally, this is equivalent to 
minimizing model complexity or computational complexity costs). 
Third, the top-down collapse of integrative control reduces the gain of 
predictive connections that normally constrain (inhibit) lower-level 
policies. This allows such policies to be expressed more freely, making 
them more pronounced and easy to trigger. This is referred to as 
‘disinhibition’ in the psychological sciences and involves a heightening 
of the senses (within the input hierarchy) and a strengthening of re
sponses (within the output hierarchy), to produce a ‘livening of the re
flexes’ (Gorenstein and Newman, 1980). Thus, organisms capitalize on 
model complexity and precision to formulate a stronger and faster 
response. This may provide organisms with just the edge needed to force 
themselves a way out of a dire situation (Byrd et al., 2019). 

Such changes come at a price, however, which is a loss of regulatory 
finesse. A reduction of model complexity makes organisms more 
vulnerable to environmental conditions that require a broader (and/or 
long-term) perspective. Additionally, a deep collapse of a regulatory 
hierarchy may lead to a state of disinhibition where any input almost 

immediately triggers a strong output and vice versa. In such a case, even 
a small environmental disturbance may trigger an intense, volatile, and 
uncoordinated response (Byrd et al., 2019). This response may then 
change the environment of the system to the effect that it serves as a 
trigger for a novel response, and so on. The self-sustaining (circularly 
causal) pattern of reflexive activity that thus emerges is called a ‘clonus’. 
This refers to situations where a loss of higher-order inhibitory 
constraint causes the input and output elements of a control system to 
become strongly coupled (i.e. the intrinsic coupling of the system is 
enhanced, causing it to become strongly reactive to input). Such a strong 
intrinsic coupling then induces a stronger extrinsic coupling (of the or
ganism with its environment) and clonic activity. At some point, the 
system may become so strongly coupled to its environment that it will 
lose its ability to compensate for environmental disturbances: it will 
decompensate (lose control), after which the interior state of the system 
will linearly follow that of the environment (i.e. a loss of homeostasis). 
In living systems, such tipping points amounts either to disease, or the 
death of the organism. 

To our knowledge, this is the first detailed model of allostatic over
load, or the way in which stress may cause a top-down collapse of high- 
level integrative control that leads to increased levels of disorder (en
tropy) in hierarchical message passing and overt behavior in living 
systems, to eventually produce tipping points (disease or death). Such 
tipping points occur when such a collapse reaches too deeply down a 
hierarchy of control systems (i.e. when a hierarchical tree is pruned 
beyond a level of adequate control). According to this model, organisms 
may differ in their susceptibility to tipping points as a result of indi
vidual differences in the outgrowth (maturation) of their regulatory 
hierarchies, i.e. different heights of the regulatory tree come with 
different thresholds for tipping points (decompensation) and, hence, 
biological fitness. This hypothesis can be tested e.g. by examining the 
degree to which measures of the hierarchical depth of biological net
works predict entropy levels and tipping points under varying levels of 
stress (see Discussion). 

Previously, scholars have defined stress specifically as a failure of 
control (e.g. Del Giudice et al., 2018), but provided no clear mechanism. 
Others focused more on physiological states (McEwen and Wingfield, 
2003) or cognitive processes in humans (Koolhaas et al., 2011; Ursin and 
Eriksen, 2010). Most previous definitions of stress situate that state 
somewhere in between criticality and tipping points as defined above. 
Here, we employed a more liberal definition of stress as the (cumulative) 
error state of hierarchical control systems (Peters et al., 2017). The 
advantage of this definition is that is can be generalized across species 
and that it lies on a continuum, with clear and objectifiable 
stress-responses marking discrete levels of stress, i.e. (0) Routine per
formance (low levels of prediction error, low entropy, reflexive, 
instinctive (Pavlovian) or habitual behavior, ‘homeostatic control’), (1) 
Creative problem solving (upward escalation of prediction error signals, 
rising entropy, goal-directed action, ‘allostatic control’), (2) Emergency 
responses (high levels of prediction error, high entropy, top-down 
collapse of goal hierarchies, ’allostatic overload’, downgrading from 
goal-directed to lower forms of associative learning, ’regression to ho
meostatic control’), (3) Critical slowing down (high prediction error, 
high entropy, near loss of control) (4) Tipping points (decompensation, 
loss of control). For a similar categorization of the stress response, see 

Fig. 8. Severe Stress in Organisms: The Collapse of a Hierarchy of Goal States. 
Note: Hierarchical Bayesian control systems allow organisms to incorporate an increasing number of contextual cues from their environment and create a hierarchy of 
‘world models’, i.e. goal states that are used to inform behavior. At the highest levels of integration, such goal hierarchies involve internal (self) models, external 
(social) models and cross-cutting (normative) models (Fig. 7). In severely stressed organisms, this goal hierarchy collapses in a top-down manner, possibly as a result 
of hub overload and failure (grey nodes). This results in a ‘decontextualization’ of behavior, with organisms favoring short-term and self-centered policies (informed 
by self models) over long-term social and/or normative behavior (social and normative models), to save energy and resources. The regulatory collapse may involve 
several hierarchical levels of integration, depending on the error levels that are encountered. Phenotypically, this manifests as organisms ‘downgrading’ from goal- 
directed to instrumental, habitual or even reflexive forms of behavior. The top-down loss of hierarchical control by high-level (inhibitory) empirical priors produces 
both a disinhibition and loss of coordination of lower levels, adding to permutation entropy levels. Please note that individual differences may cause some organisms 
to retain top-down control under severe levels of stress. See text for further details. 

3 Neurophysiologically, precision is usually thought to be mediated by the 
control of synaptic efficacy; either through neuromodulatory transmitter sys
tems or the nonlinear dynamics that mediate synchronous gain. This will be 
particularly relevant later when we talk about psychopathology. This follows 
because most of the drugs used in psychiatry act upon the neurotransmitters 
that modulate synaptic gain and therefore control the precision of message 
passing in the human brain. 

R. Goekoop and R. de Kleijn                                                                                                                                                                                                                 



Neuroscience and Biobehavioral Reviews 123 (2021) 257–285

274

(Romero et al., 2009). 

4. The human brain as a hierarchical Bayesian control system 

So far, we have discussed rules of network structure and function that 
may apply to all living systems. We will now show that such rules apply 
to human behavior. At larger spatial scales, the human brain has a 
multimodular, hierarchically controlled small world network structure 
(Bullmore and Sporns, 2009; van den Heuvel et al., 2008v). Its 86 billion 
neurons (Azevedo et al., 2009) form neural modules that are an average 
of around 5 degrees of separation apart from any other module in the 
brain (Bassett and Bullmore, 2006; Hilgetag and Goulas, 2016; Sporns 
and Zwi, 2004; van den Heuvel et al., 2008v). These modules form a 
nested hierarchy of part-whole relationships (Meunier et al., 2010, 
2009) that give rise to a bow-tie network architecture (Markov et al., 
2013). Perceptive areas form the input hierarchy of this bow tie, the 
medial (pre)frontal lobe and anterior insula its knot and (pre)motor 
cortices and hypothalamic areas make up the output hierarchy. Overt 
behavior reflects the concerted action of large numbers of simple 

input-output patterns at the bottom of this hierarchy (‘reflexes’, which 
tie basic input to motor and endocrine output primitives), the activity of 
which is carefully orchestrated by higher levels of integration (Fig. 8; 
Botvinick, 2008; Botvinick and Weinstein, 2014; Freeman, 2001, 2005; 
Ribas-Fernandes et al., 2011). The human brain has been compared to a 
Bayesian inference engine, whose primary job it is to infer the (hidden) 
causes of its sensory input by building predictive models of the world 
and acting upon those models (Friston, 2010; Friston et al., 2006). In 
doing so, a generative model is constructed with multiple hierarchical 
levels of model complexity that constitutes our inner experience and 
overt behavior (the human mental phenotype, or ‘mind’). Fig. 9 sum
marizes current ideas on the human mind as a hierarchical generative 
model that has its origin in different forms of perceptive information 
(Badcock et al., 2019; see below for further references). The statistical 
structure of this phenotypical hierarchy is assumed to mirror that of the 
human brain (i.e. it has a nested modular bow-tie network structure). 

At the bottom of the phenotypical hierarchy, three global types of 
perceptual input can be discerned. Exteroceptive perception involves 
information coming from the external environment, i.e. the main senses 

Fig. 9. The Human Mind as a Hierarchical Generative 
(Bayesian) Model. 
Note: A.The human mind can be modeled as a nested modular 
hierarchical generative model that controls perception and 
action (Badcock et al., 2019). This figure summarizes current 
ideas on the statistical dependencies between the different 
components of this hierarchy, which are assumed to echo those 
of human brain function (i.e. a nested modular folded bow-tie 
structure). Circles indicate generative models and circles 
within circles subordinate models. Higher level (domain gen
eral) models are inferred from progressively lower (domain 
specific) models that eventually have their origin in different 
forms of perceptive information (e.g. exteroceptive, proprio
ceptive and interoceptive domains). Arrows sizes reflect the 
putative contribution of a particular domain in biasing infer
ence within another domain (see text for further details). Note 
that cognition, emotion, executive functions and motivation 
occupy a similar hierarchical level of inference (the Figure is 
3D). Domains may affect each other across loops of different 
pathlengths (e.g. from input to output via a hierarchically or
dered set of goal states), reflecting different degrees of infor
mation processing (policy selection). The shortest loops within 
this hierarchy represent basic stimulus-response patterns (e.g. 
simple and more complex ‘reflexes’, Pavlovian instinct patterns 
and habitual behavior), whereas the longest loops reflect 
goal-directed behavior that is informed by highly integrated 
world models involving self-referential, social and normative 
models (Fig. 6). Each phenotypical domain may have multiple 
functional-anatomical brain regions as a correlate (see text and 
references for further details). B.When stressed severely, con
textually redundant higher-level goal states are shut down to 
save energy and to enhance the stress response (Fig. 8). This 
corresponds to a collapse of self, social and/or normative 
models, causing a shift away from goal-directed behavior 
(longer loops) towards habitual, instinctive or reflexive 
behavior (progressively shorter loops). The loss of higher-level 
integrative constraint triggers a disinhibited and disordered 
state at lower levels within the hierarchy (glow), involving 
emotional, motivational, cognitive, perceptive, premotor ex
ecutive and action domains. A shallow collapse may provide 
leverage out of a difficult situation, but a deep collapse will 
cause the current model to revert to a hierarchical model of 
psychopathology (HiToP, see text). In such cases, the system 
will show increased intrinsic connectivity, which enhances the 
extrinsic connectivity of the individual, i.e. an increased 
dependence on the environment and decreased homeostasis. 
This may present e.g. as strong interpersonal dependencies 
and/or social conflict. When goal hierarchies fail to mature, 
such underregulated states become chronic (e.g. personality 
disorders). See text for details.   
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of vision, hearing, touch, smell and taste. Interoceptive information 
involves information feeds coming from the internal environment, e.g. 
gut and vascular pain and blood pressure afferents, blood glucose con
centrations, smooth muscle tension, et cetera. Finally, proprioceptive 
information takes up position in between the internal and external 
environment and mostly involves input from skeletal (striated) muscles, 
tendons and bones. In is thought that hierarchical inference on these 
basic input domains progressively produces the human mind (Badcock 
et al., 2019, Fig. 9). Recent studies conceptualize human emotion as 
hierarchical Bayesian inference on predominantly interoceptive infor
mation, placing this hierarchy of affective generative models some
where along the middle of the larger hierarchy (Seth and Friston, 2016; 
Smith et al., 2019a). Similarly, cognition may involve hierarchical 
inference on predominantly exteroceptive information (Smith et al., 
2019b). Executive functions in turn involve part of an output hierarchy 
that is engaged in high-level (conceptual and premotor) planning, with a 
predominant connection to motor output (controlling muscle action) 
(Pezzulo, 2012). Motivational functions have been conceptualized as 
aiding in predicting the precision of motor and endocrine output, with a 
possible emphasis on endocrine action (Pezzulo et al., 2018). As dis
cussed above, the top of this hierarchy involves highly integrated 
generative models of their inner (self) and outer (other) states, along 
with their histories and possible futures. Self models are processed in 
midline areas of the human brain, which are involved in some of the 
highest levels of integrative processing (Haggard, 2017; Northoff et al., 
2006; van der Meer et al., 2010v; Thornton et al., 2019). Additionally, 
humans make highly integrated models of the states of others and their 
possible histories and futures. Such social models (or ‘theories of mind’) 
involve medioprefontal, (superior) temporal and temporoparietal areas 
(Amodio and Frith, 2006; Gallagher and Frith, 2003; Mars et al., 2013; 
Thornton et al., 2019), which process information at very high levels of 
contextual integration. Finally, a large body of literature has identified 
brain regions that are involved in making decisions about events that go 
beyond the self or the immediate social environment, but instead 
involve common social laws and values. These normative structures 
include ventromedial areas for norm processing and right insula, 
dorsolateral prefrontal, and dorsal cingulate cortices for processing in 
relation to social norm violation (Zinchenko and Arsalidou, 2018). Such 
brain areas again involve some of the highest levels of integration across 
subordinate systems. Together, such studies provide both phenotypical 
and neuroanatomical support for the existence of a hierarchy of gener
ative models with interior (self), exterior (social) and normative struc
tures at the top of this hierarchy. 

Overall, our brains seem to have capitalized particularly on infor
mation processing at high levels of functional integration, making 
detailed predictions of events that take place more distally in time as 
well as in (interpersonal) space (Herrmann et al., 2007). The ability of 
the human brain to take large amounts of contextual information into 
account when formulating a response seems to explain much of its 
disproportionate size (Dunbar and Shultz, 2007). Despite such exten
sions, however, the basic principles of control theory that govern 
behavior in lower organisms remain the same as in humans. As in 
woodlice, activity levels drop (i.e. we become quiet and pleased) when 
the perception of our past, current and future environment agrees with 
our intricate interpersonal goals and expectations. 

When observing human brain function and behavior under severe 
levels of stress, several things stand out. Although mild forms of stress 
differentially affect or even enhance our personal sense of identity, 
promote social cohesion or a sense of global connectedness, severe stress 
brings us into ‘survival mode’ (Buchanan and Preston, 2014; Mao et al., 
2016; McEwen and Wingfield, 2003; Von Dawans et al., 2012). Neuro
imaging studies show that the human brain falls back from goal-directed 
to habitual control during severe stress (Schwabe and Wolf, 2009, 
2011). This corresponds to decreased activity in higher level systems 
such as the anterior cingulate, anterial insular and temporopolar areas 
(Arnsten, 2009; Dias-Ferreira et al., 2009; McEwen et al., 2015; 

McTeague et al., 2016; Schwabe and Wolf, 2009, 2011; Van Oort et al., 
2017). Brain areas that decrease activity during severe stress are midline 
structures involved in generating self-models (self-image; Goette et al., 
2015; Hooley et al., 2005; Kesting et al., 2013; Staniloiu and Marko
witsch, 2012), as well as brain areas associated with the production of 
social world models or theory of mind (Sandi and Haller, 2015; Todd 
et al., 2015), producing more selfish forms of behavior. Finally, severe 
stress is known to negatively affect moral decision making (Lee and Yun, 
2019; Mendez, 2009; Starcke et al., 2011; Youssef et al., 2012). This 
change in behavior is related to altered activity in brain areas involved 
in transpersonal identification, including law-abiding and moral 
behavior (Lee and Yun, 2019). Thus, severe stress decreases activity 
specifically within brain areas that support some of the highest forms of 
contextual integration. Such findings support the hypothesis that sig
nificant stress causes a top-down collapse of deep goal hierarchies to 
save energy and resources, causing people to take increasingly less 
amounts of contextual information into account when formulating a 
response (Figs. 8 and 9). Of course, individual differences may cause 
some people to deviate from this general pattern. 

In short, we propose that severe stress prunes the top of a regulatory 
pyramid in people’s brains to produce a subtle form of decortication 
(hypofrontality, or a ‘chicken without a head’ syndrome). Such a top- 
down collapse of goal hierarchies reduces the amount of integrative 
control (lowers the gain of inhibitive empirical priors), which increases 
disorder at subordinate levels of the hierarchy, down to the level of the 
shortest reflex loops. This may manifest as a more violent expression of 
behavioral primitives or stress response patterns such as fight, flight, 
fright, feeding, freezing, reproducing, fainting, fawning, etcetera. This 
disorganized state may underlie increased levels of entropy observed in 
the overt behavior of severely stressed subjects, which are known to 
predict the onset of tipping points. Such ‘decompensation’ or ‘dysregu
lation’ can serve as a generic model for episodic mental illness (van de 
Leemput et al., 2014). In such cases, the hierarchical generative model 
as shown in Fig. 9B reverts to a hierarchical taxonomy of episodic mental 
illness (‘psychopathology’) (HiToP - Kotov et al., 2017). The relative 
contribution of each phenotypical domain to the overall disease pre
sentation can be parsimoniously expressed as a transdiagnostic factor 
profile. A differential collapse of the world models of self-functioning, 
interpersonal functioning and normative functioning should then be a 
common factor in all forms of mental illness (whether episodic or 
chronic). The specific type of episodic mental disorder is then deter
mined by the subordinate modules and behavioral primitives that show 
(disinhibited) disorder as a result of losing these highest levels of inte
grative control. 

This idea is supported by phenotypical studies that show decreased 
scores on measures of self-functioning and interpersonal functioning as 
common factors in different forms of mental illness (e.g. Sleep et al., 
2019). Also, recent findings show that some changes in brain function 
are common to a diverse range of acute mental disorders (e.g. major 
unipolar depression, bipolar disorders, psychosis and anxiety disorders). 
Such disorders are accompanied by ‘transdiagnostic changes’ in func
tional neuroanatomy, which include decreased activity levels in pre
frontal and anterior brain regions that support high-level cognitive 
control (McTeague et al., 2016). These are the same areas that harbor 
our world models of self, others and global world views (Brunner et al., 
2010), which are downregulated under stress (see above). Together, 
such findings support the idea that all forms of episodic mental illness 
involve a temporary collapse of higher levels of control that reaches too 
deeply down the hierarchy. This hypothesis can be tested by studying 
measures of hierarchical depth in different brain areas as a function of 
entropy (disorder) levels in hierarchical message passing and corre
sponding phenotypical changes in healthy controls and patients with 
different forms of mental illness (see Discussion). 

From the above, it follows that individual differences in the degree to 
which goal hierarchies have grown and matured in the course of life 
should explain different susceptibilities to mental illness (disorder and 
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tipping points): people with strongly matured hierarchical trees may 
better withstand the pruning of their hierarchies during a stressful 
episode than people with lesser developed hierarchical trees. Interest
ingly, the development of goal hierarchies across the lifespan has been 
linked to personality development (Russell Cropanzano and Citera, 
1993). This process involves the outgrowth and sculpting of goal hier
archies as a result of different forms of associative learning of organisms 
in relation to themselves and their environments (‘maturation’), see 
above. Whereas episodic mental disorders involve a temporary collapse 
of goal hierarchies, personality deficits may involve a failure of such 
structures to develop normally. Neuroimaging studies show that people 
with (borderline) personality disorders, who are more susceptible to 
mental decompensation (‘crises’), have low volumes of gray matter in 
the same areas of high-level (cognitive) control that are downregulated 
under stress (Brunner et al., 2010; McTeague et al., 2016). These un
derdeveloped brain areas involve the same areas that harbor our world 
models of self, others and global world views (Brunner et al., 2010). The 
global faculty of cognitive control that is down-regulated in acute 
mental illness can therefore be subdivided into high-level world models 
that support self-functioning (agency), interpersonal functioning 
(communion) and normative models (meaning), which may each be 
downregulated to different degrees under stress (Fig. 9B). These mental 
faculties therefore qualify as ‘transdiagnostic factors’, which are to some 
degree involved in all personality disorders (when underdeveloped) and 
episodic mental disorders (when downregulated). 

The collapse of these transdiagnostic world models under stress may 
cause people to experience specific sets of ‘symptoms’, i.e. a decreased 
sense of purpose and normativity (due to collapsing normative func
tions), a loss of empathic interest in others or the external world, a 
decreased feeling of communion, derealization (due to a collapse of 
social / external models), or rather undecisiveness, low self esteem, 
distorted body-image and/or symptoms such as depersonalization and 
dissociation (a clinical state characterized by a loss of self-awareness 
caused by a collapse of self-models). These are typical symptoms of 
(borderline) patients during acute episodes and may to some degree be 
common to all patients with mental illness. Indeed, the ‘alternative 
model’ for personality disorders in the Diagnostic and Statistical Manual 
of Mental Disorders (DSM-5) currently lists self-referential and inter
personal functions as two global transdiagnostic factors that are un
derdeveloped in personality disorders (Zimmermann et al., 2015). These 
may at some point be supplemented with the third overarching factor 
(normative functions) as identified in the current paper, a conclusion 
that is consistent with some existing models of personality development 
(e.g. Cloninger, 2008). The maturation of these ‘great three’ world 
models involves a life-long process of goal-directed learning. The 
development of these mental domains across the lifespan has been 
referred to as personality development (or more specifically ‘character’ 
formation) (Cloninger, 2008). The various generative models that are 
subordinate to these three top-level domains (i.e. emotional, motiva
tional, cognitive and executive domains and subdomains) qualify as 
lesser-order transdiagnostic factors (Fig. 9A). These involve shorter 
stimulus–response loops that have been associated with Pavlovian 
learning and habit learning. Such functions develop at earlier stages of 
life and their stable expression across years has been referred to as 
‘temperament’ (Cloninger, 2008). Individual differences in the expres
sion of such factors are known to produce different personality profiles 
and susceptibilities for episodic disorders. Together, such findings sup
port the idea that a stress-induced collapse of already underdeveloped 
regulatory hierarchies triggers disorder and tipping points in human 
subjects with personality disorders, with shallower hierarchies 
increasing the risk of such episodes. Future studies may link the hier
archical depth of regulatory hierarchies to scores on specific personality 
domains and susceptibilities to episodic disorders. 

Apart from explaining individual differences in behavior and (sus
ceptibility to) mental illness, the current model may explain individual 
differences in social interactions. This is because individual organisms 

can be modeled as hierarchical Bayesian control systems that respond to 
each other, i.e. the output of one individual (behavior) may serve as the 
input to another (Friston and Frith, 2015). Such models allow for studies 
on interpersonal dynamics at small timescales (e.g. stress-induced 
changes) or at larger timescales (e.g. developmental differences). For 
instance, a top-down collapse of higher order control may increase 
extrinsic (social) coupling of one individual with respect to another. This 
may then cause a collapse of higher order control in the other person (e. 
g. through a lack of sleep), producing highly recursive (clonic) stim
ulus–response relationships between two individuals. As a result, two 
undercontrolled (stressed) individuals may become strongly coupled. 
This would be a model of strong mutual dependency and/or intense 
social conflict, including a mutual loss of law-abiding and moral 
behavior. Much like clonic spinal reflexes that can be silenced only by an 
external influence, vicious cycles in social behavior are a symptom of 
insufficient higher-level control that typically require an external party 
(e.g. mediation, judicial arbitry, or medical intervention) in order to be 
reduced (Fehr and Fischbacher, 2004). 

Thus, individual differences in hierarchical Bayesian control (e.g. 
personality development) produce stable differences in social interac
tion, which translate into stereotypical connectivity patterns at a local 
level, e.g. scores on personality dimensions predict the topological po
sition of individuals in social networks (e.g. Krause et al., 2010). Such 
individual differences in local connectivity act as simple rules that knit 
together complex social networks at a global level. This includes the 
formation of social network clusters in which some opinions and beliefs 
are held and contrasted with those of other individuals or groups, while 
trying to get a mutual grip on reality. Social networks may therefore 
follow similar rules for network architecture and function (collective 
inference) as shown in Fig. 6. 

5. Discussion 

In the current paper, we present a universal theory on information 
processing in living systems as well as a general theory on stress and the 
stress response that are based on first principles in biophysics. We pro
pose that all living systems can be modeled as scale free, small world 
(nested modular) network structures with an information bottleneck 
structure, resulting in hierarchically organized input (perception), 
throughput (goal setting) and output (action) parts that are engaged in 
Bayesian inference. To our knowledge, this is the first time that concepts 
from network science and graph theory are put together with current 
ideas on predictive coding to explain hierarchical Bayesian inference in 
living systems (e.g. Friston et al. (2017)). When embedded in an (a)bi
otic environment and allowed some freedom of movement, such systems 
function as ‘hierarchical Bayesian control systems’, which change their 
environments through action in order to reduce the difference (error) 
between their perception of their current inner or outer state (posteriors) 
and their self-inferred goal states (priors: predictive models of the world 
of varying levels of complexity). The minimization of this error through 
either action or model adjustment (learning) corresponds to a gradient 
search on mean variational free energy, which is known as ‘active 
inference’. Error can be minimized with respect to a hierarchy of goals 
and corresponding subgoals, with the top of the goal hierarchy repre
senting the most integrated (‘highest’) goals of the organism. Such goal 
hierarchies allow organisms to perform an iterative search for ecological 
niches of a certain predilection, i.e. niche exploration. The prediction 
error (free energy levels) of hierarchial Bayesian control systems can be 
defined as ‘stress’ and the action that follows the error as the ‘stress 
response’. Under stressful conditions, error accumulates vertically in the 
goal hierarchy and increases the oscillation frequency of network nodes 
until energy demand exceeds energy supply (‘allostatic overload’). The 
most connected (highest degree, or central) nodes at the top of the in
formation bottleneck (goal hierarchy) are most vulnerable to such en
ergy depletion, causing them to selectively overload and fail. To our 
knowledge, this is the first explicit mechanistic model of allostatic 
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overload. The selective loss of central (hub) nodes results in a top-down 
collapse of goal hierarchies, causing organisms to abandon hierar
chically higher (more integrated and abstract) goals in favor of hierar
chically lower (less integrated and more concrete) goals to save energy 
and resources. This corresponds to a shift in behavior from long-term, 
cooperative (prosocial) and/or selfless (altruistic) policies towards 
short-term, solitary (asocial) and/or self-centered (antisocial) policies. 
In humans, the (hierarchically) highest goals correspond to social norms 
and moral values that individuals deem applicable across living systems 
and timescales. The collapse of such goal states and corresponding 
behavioral changes under stress corresponds to a blunting of social in
teractions and, eventually, moral decay (of course, individual differ
ences may cause subjects to deviate from this general rule). Studies 
indicate that high levels of stress are accompanied by an increase in 
permutation entropy in measures of hierarchical message passing and 
overt behavior. Permutation entropy is a measure of ‘disorder’ in 
timeseries that quantifies a number of erratic changes. In many living 
systems, increases in permutation entropy successfully predict a sudden 
phase transition (a tipping point), indicating disease, or the death of an 
organism. We propose that an increase in permutation entropy signifies 
a loss of higher level integrative control across lower-order systems, 
causing these systems to behave in an uncoordinated, desynchronized 
(erratic, disordered) way. In humans, a temporary collapse of high-level 
(integrative) goal states may underlie episodic mental disorders (e.g. 
major depression, psychosis, panic attacks), whereas a failure of goal 
hierarchies to mature in the course of life may serve as a model of 
personality (trait) disorders. The term ‘disorder’ therefore be seems 
well-chosen, since it points out an increase in permutation entropy. 
Whereas a shallow collapse may only cause small changes in behavior, a 
deeper collapse of goal hierarchies diminishes model complexity to the 
point where stimuli almost immediately trigger (stress)responses and 
circularly causal (clonic) patterns emerge between the organism and its 
environment. Such vicious cycles or attractor states signal a loss of 
homeotasis and usually align with disease, or the death of an organism. 
Such changes are universal features of living systems and can be 
observed at any scale level of organization, including social levels. In 
order to test these predictions, researchers may need to consider the 
whole of hierarchical message passing in organisms instead of just parts 
of it. This has been a major obstacle in the past, but modern data analysis 
techniques increasingly allow studies of the full complexity of in
teractions between genes, proteins, metabolites, neurons, brain areas, 
phenotypes, animal populations and people (the -omics literature). 
Below, we will discuss several ways of testing these predictions. 

5.1. General architecture 

Our first prediction follows from the universal presence of small 
world topologies in living systems (see Introduction). As a result of this 
universality, we expect living network systems of any type to show 
commonalities in network structure. Network structure can be analyzed 
using software packages such as the igraph library in R (Csardi and 
Nepusz, 2005) or Cytoscape (Shannon et al., 2003). Small-worldness can 
be quantified by calculating a small-worldness index, which compares 
the clustering coefficient (modularity) and average path length of given 
network to a randomly connected network of equal size (Humphries and 
Gurney, 2008). A value significantly greater than 1 (and preferably 
more) indicates that the network is non-randomly connected and con
tains hub nodes and clusters that allow energy to dissipate along short 
and efficient paths. Hub nodes can be identified by examining the degree 
(number of connections) per node, and centrality measures can be 
calculated that examine the relative importance of nodes in guiding 
traffic across a network. Hub structures contract their neighboring nodes 
into network clusters, which can be detected quantitatively by means of 
network community detection algorithms (e.g. Newman, 2004). Soft
ware has been developed that allows detection of so called ‘rich club’ 
structures (Fig. 4), which are collections of hub nodes that connect 

significantly more to other hubs than chance levels (Opsahl et al., 2008). 
Rich clubs are nested hierarchies of hub nodes that produce a scale 
invariant network structure. In such structures, each network cluster can 
be modeled as a node at a next level of spatial aggregation. Functional 
integration within nested rich clubs structures is an important ingredient 
of hierarchical Bayesian inference. Also, software packages exist that 
can test network structures for a diverse range of motifs, e.g. (Masou
di-Nejad et al., 2012). These include bow-tie motifs as well as their 
constituent motifs, such as feedforward and feedback loops. At the or
ganism level, we expect biological networks to show a nested bow-tie 
(bottleneck) structure, with cross-connections between similar levels 
of input and out hierarchies of a (folded) bow-tie, producing 
input-throughput-output loops of different path lengths. We expect 
bow-tie motifs to consist of a family of smaller motifs that include 
feedforward and feedback loops. Studies have already shown an abun
dance of the feedforward loop motif, which we expect to reflect 
top-down predictive processing in input hierarchies and bottom-up 
predictive processing in output hierarchies (Figure 6, Box 1). Such 
motifs should be counterbalanced by feedback motifs that reflect 
bottom-up correction of higher-level predictions by lower level predic
tion errors in input hierarchies (and vice versa in output hierarchies). 

With respect to energy flows across biological network structures 
(network ‘function’) and its directionality, a distinction can be made 
between global (macrolevel) and local (microlevel) flows. The input 
hierarchies of nested bow-tie structures should show multiple excitatory 
energy streams converging onto higher level hub structures while 
ascending in the hierarchy, reflecting the functional integration of pre
diction error signals. Also, input hierarchies should show multiple en
ergy streams diverging while descending in such hierarchy, reflecting 
top-down and inhibitive predictive control. Together, both informa
tion streams reflect perceptive inference. We propose that the di
rectionalities of prediction and prediction error streams are reversed in 
output hierarchies when compared to input hierarchies, reflecting hi
erarchical action control (Fig. 6). With respect to local flows, we expect 
input areas of bow-tie motifs to contain a large proportion of hub nodes 
with multiple arrows converging onto each hub. Such ‘integrator hubs’ 
(sinks, or driver hubs; Yan and He, 2011) are said to have a high 
in-degree, referring to the number of incoming connections from other 
nodes that indicate the process of functional integration. Conversely, the 
output areas of bow-tie motifs should contain a significant proportion of 
network motifs that involve multiple outputs diverging from a single 
(hub) node onto a distributed set of other nodes. Such ‘distributor hubs’ 
(sources, or driver hubs; Yan and He, 2011) have a large out-degree, 
referring to the number of outgoing connections that support the pro
cess of action control. The throughput parts (knots of bow-ties) may 
show a substantial number of sources, sinks, and hubs with balanced 
numbers of incoming and outgoing connections, reflecting continuous 
cross-evaluation. The net in- and out-degrees of prediction error or 
predictive hubs are expected to shift along a gradient from input to 
throughput and output parts of the network, reflecting a smooth tran
sition between these domains. As observed, we expect the dynamics of 
bottom-up and top-down units (as well as within-level dynamics) to 
produce oscillatory behavior of different spatiotemporal scale, i.e. 
attractor states. 

Predictions with respect to the directionality of links in biological 
networks can be tested using software developed to study causal re
lationships (conditional dependencies in time) between mutually 
dependent variables (e.g. Scheines et al., 1998). Inferring directions 
amongst variables using causal reasoning software is considered a hard 
problem in statistics and the directions obtained may not always be 
reliable. In networks in which nodes have clear and measurable re
lationships (e.g. genomic, proteomic or neural networks), it may be 
quite feasible to infer directions, whereas in other networks (e.g. sta
tistical networks used to study brain function or phenotypical states), 
testing these hypotheses may prove to be more difficult. Recent attempts 
to infer both global (Hillebrand et al., 2016) and local (Märtens et al., 
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2017) directionalities of functional connections in the human brain have 
involved the use of a novel and promising phase transfer entropy mea
sure (Lobier et al., 2014). Interestingly, this measure may partly reflect 
the flow of prediction error (free energy) across network systems, since 
entropy and energy measures are related through the second law of 
thermodynamics. Using phase transfer entropy, a bottom-up conver
gence was demonstrated in sensory areas, consistent with ascending 
prediction errors within the first part of a bow-tie structure. Evidence for 
top-down divergence was less clear, however. At a more local level, a 
bidirectional convergence/divergence motif was found, which may 
reflect true bidirectionality or an insufficient decomposition of flow 
directionalities into ascending (excitatory) prediction errors and 
descending (inhibitory) predictions. Overall, the quantification of en
ergy flows and their directions within biological networks is an impor
tant venue for further study. Similar measures that are used to study 
directionality of energy flows in brain function can be used to study 
molecular or neural networks. 

Several of the predictions made in this paper require a quantification 
of the concept of ‘hierarchy’. Despite its common use in everyday lan
guage, it has proven a challenge to produce a formal definition of hi
erarchy, hence several definitions exist (Corominas-Murtra et al., 2013). 
In small world networks, some nodes or clusters may only exist by virtue 
of other nodes or clusters, i.e. they form conditional dependencies in 
space (a hierarchy of part–whole relationships; Ravasz and Barabasi, 
2003). Additionally, biological networks involve state changes that 
follow a hierarchy of conditional dependencies in time (i.e. causal order, 
or directionality). Both hierarchies need to be accounted for in order to 
obtain an idea of the hierarchical order of nodes or clusters in scale 
invariant network structures. Perhaps the most formal definition of hi
erarchy is provided by Corominas-Murtra et al. (2013). The authors 
propose to quantify hierarchy in terms of three key elements, which 
include treeness (pyramidical shape, or spatial hierarchy), feedfor
wardness (top-down or bottom-up directionalities, or temporal hierar
chy) and orderability (the effect of causal cycles), allowing the 
hierarchical structure of different types of networks to be directly 
compared within a single three-dimensional space. This definition of 
hierarchy controls for the nestedness and directionality of links, but 
needs to be adapted for weighted networks. Perhaps a more 
straight-forward approach to measuring the number of hierarchical 
levels of a biological network structure would be to count the number of 
nested relationships between clusters and subclusters (i.e. scale levels) 
regardless of directionality (Kaiser and Hilgetag, 2010). The number of 
functionally segregated subclusters that are integrated in a nested 
fashion into a particular hierarchy of control provides a measure of the 
height of a hierarchical tree (Newman and Girvan, 2004). Several hi
erarchical network clustering algorithms exist that can provide infor
mation on the number of part- whole relationships, allowing for the 
construction of corresponding tree-graphs (e.g. Lancichinetti and For
tunato, 2009). Measures of nestedness (hierarchical depth) should be 
intimately tied to the proportion of functional integration versus 
segregation of network clusters. This relationship can be tested quanti
tatively by using another measure derived from neuroscience, called 
neural complexity (CN; Rubinov and Sporns, 2010; Tononi et al., 1994). 
This measure defines functional segregation as the relative statistical 
independence of small clusters of a system and functional integration as 
significant deviations from independence of larger clusters. CN ex
presses the average deviation from statistical independence for clusters 
of increasing size. CN values are high when functional segregation and 
integration coexist in a balanced manner and low when the components 
of a system are either completely independent (segregated) or 
completely dependent (integrated). Although first used to analyze 
neural networks, this measure captures a universal feature of biological 
systems (Rubinov and Sporns, 2010). Although CN is a structural mea
sure, it may well serve as a means to quantify Bayesian model 
complexity, which involves the number of independent variables (de
grees of freedom) that are available to a particular model. Model 

complexity is expected to decrease when moving up the hierarchy of 
generative models, since higher level models offer a more parsimonious 
explanation of lower-order events (Spiegelhalter et al., 2002). Other 
measures to quantify information integration and corresponding fitness 
have been suggested as well, e.g. Edlund et al. (2011). Together, these 
measures of (nested) hierarchical depth and model complexity can be 
used to test predictions with respect to the comprehensiveness of hier
archical control in biological networks (see previous sections for such 
predictions). Briefly, we expect the amount of functional integration 
across multiple contextual cues (and the corresponding height of the 
nested hierarchical tree) to differ between lower (less) and higher 
(more) organisms, and individuals or species with lower (less) or higher 
(more) levels of autonomy/agency and self-directedness, solitary (less) 
and more social (more) behavior, less (less) and more (more) prosocial 
behavior, smaller (less) and larger (more) amounts of parental invest
ment, less (less) or more (more) transgenerational awareness and ac
tions, less (less) and more (more) normative (law abiding) or moral 
behavior, and between calm (more) and stressful (less) situations (see 
below). Such differences may involve specific parts of the network, e.g. 
throughput hierarchies may show greater (individual) differences in 
hierarchical depth than perceptive or output hierarchies. 

As discussed, hierarchical depth is related to the ability of an or
ganism to control its internal states or the world around it. Organisms 
with lesser developed hierarchies may therefore find it more difficult to 
adapt to complex and changing environments. In the specifically human 
case, the maturation of deep goal hierarchies in humans can be linked to 
personality development, and insufficient maturation of hierarchical 
trees to personality disorders and instability (mental illness). Such def
icits eventually decrease scores on measures of self models (agency), 
social models (communion) and normative models (meaning). Future 
studies may compare the hierarchical network structure of subjects with 
and without personality disorders to further test these predictions, e.g. 
using neuroimaging techniques. As observed in Section 4, individual 
differences in the height or maturation of goal hierarchies can also be 
linked to stable individual differences in social interaction, which define 
the local topology in social networks to eventually affect the global 
structure of social networks. 

As a general remark, hierarchical Bayesian inference describes a 
mechanism for inferring ‘signs out of signs’, which amounts to a model 
of semiotics (Fortier and Friedman, 2018). Social connections can be 
defined in terms of the exchange of free energy between different agents 
through synchronized action-perception cycles and have produced a 
novel way of thinking about reciprocity and hermeneutics (Friston and 
Frith, 2015; Vasil et al., 2020). Organisms may act in such a way as to 
alter the amount of free energy (model error, stress) in other beings. This 
corresponds to aiding other organism with information or hampering 
them by not sharing information or providing desinformation, which has 
a strong moral connotation. Indeed, our model predicts that organisms 
and people that produce the most detailed and accurate models of the 
world are at a thermodynamic disadvantage when operating alone (but 
at a significant advantage when working together). The current paper 
sees hierarchical Bayesian inference as a way to explain our highest 
levels of mental functioning, including the formation of social norms and 
moral goals. Individuals may differ in the degree to which such models 
have developed and therefore differ in the degree to which their 
behavior is guided by higher moral principles. Such topics have been 
kept to the realms of philosophy for many thousands of years. Especially 
as regards moral functioning, one should be careful not to commit to a 
naturalistic fallacy by assuming that the factual structure and dynamics 
of biological systems automatically informs us of a desirable structure 
(Moore and Baldwin, 1993). Although one should be prudent, however, 
it is not impossible to move from facts (‘is’) to moral prescriptions 
(‘ought’), especially when such facts involve things of a hierarchical 
generative and symbolic nature (i.e. humans as symbolic animals). The 
relative autonomy of high-level generative models with respect to the 
lower-level events from which they have been inferred makes it possible 
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to produce highly creative models that go well beyond the available 
facts (predictions, goals), yet still have their basis in such facts (mem
ories). This relative disconnection may be what is required to finally 
integrate science and morality safely within a single discipline (the 
‘moral sciences’; Ruse, 1988). This being said, it may well be a ‘cate
gorical imperative’ for all people to actively develop mature regulatory 
hierarchies that incorporate as many contextual cues as possible into 
self-transcending world models that allow our behavior to be informed 
by universal laws and social standards through which people may con
nect (predict each other) across nations, cultures and timescales. Our 
scientific, legal and moral institutions may facilitate the exchange of 
such commonly held values or goals in order to facilitate belief updating 
and develop a commonly held world view. The detrimental effects of 
(chronic) stress on such a development should be actively countered 
across many generations. 

5.2. Stressful conditions 

Organisms continuously change their wiring patterns while antici
pating and responding to different situations. This produces a dynamic 
balance between the functional segregation and integration of network 
communities and, therefore, hierarchical structure (Sporns, 2013). In 
this paper, we propose that severe stress alters network community 
structure of biological systems in a universal way, i.e. it should produce 
a shutdown of high-level hub structures within the information bottle
necks of organisms (i.e. the knots of bow ties). This shifts the balance 
between functional integration and segregation towards functional 
segregation, thereby reducing the height of the nested hierarchical tree 
(see above). Such changes may not cause a significant shift in the 
small-worldness measure, but may decrease hierarchical depth as 
measured by hierarchical clustering algorithms. Thus, severe stress 
should produce shorter and shallower bow-tie motifs with wider knots, 
which interferes with the ability of organisms to compress information. 
This should translate into increasingly shorter loops that run from input 
via processing to output parts of a (functional connectivity) network. 
This can be tested by measuring the path length measure from input to 
output structures for different nodes of interest (i.e. the average distance 
from one node to another via a subset of intermediate nodes). We expect 
measures of hierarchical depth to be high in moderately stressful situ
ations and low under either very low or very high levels of stress (i.e. 
either complete segregation or integration). Additionally, we expect 
stress to shift the balance between predictive processing and corrections 
of such predictions in favor of prediction errors, making organisms more 
susceptible to belief updating by immediate sensory evidence. Such 
changes involve an increase in the synchronous gain (precision) of 
prediction error signals versus predictive signals, which involve changes 
in connective efficacy e.g. as a result of (neuro)modulatory signaling 
pathways in neural or molecular networks. The overall result of such 
changes may be examined by measuring shifts in scores on measures of 
directed and weighted connectivity, e.g. phase transfer entropy studies 
showing increase bottom-up convergence as opposed to top down 
divergence in perceptive or goal hierarchies and vice versa in output 
hierarchies. 

Finally, when stress levels are particularly high, we expect tell-tale 
signs of undercontrolled control systems in the form of increased per
mutation entropy (or critical slowing down) and changes in overt 
behavior that signify a reduction in model complexity. This can be tested 
by linking entropy levels and tipping point thresholds to measures of 
hierarchical depth and behavioral changes in different individuals or 
species. Such studies are readily performed in bacteria and other mi
crobes, where e.g. acidity, salinity or antibiotic levels may be varied to 
examine bacterial responses in hierarchical message passing and growth 
or survival rates (Nagar et al., 2016; Marles-Wright et al., 2008; Yu and 
Gerstein, 2006; Zhu et al., 2020). For obvious reasons, however, such 
studies cannot be easily translated to higher organisms. Actively 
bringing sentient creatures to the brink of a tipping point would be 

highly unethical. In the specifically human case, severe stress does 
appear to decrease the amount of functional integration within the 
human brain, as measured by an information processing efficiency 
measure (Rubinov and Sporns, 2010; Wheelock et al., 2018). Another 
study in post-traumatic stress syndrome reports increased amounts of 
functional segregation (Zhu et al., 2019). Yet other studies show that the 
human brain falls back from goal- directed to habitual control during 
stress (Schwabe and Wolf, 2009, 2011). Such findings are in line with a 
collapse of high-level integrative control, but require a systematic 
approach in order to prove the principles put forward in this paper. 
Although experimental studies are precluded, however, studies of 
mental illness may provide a natural situation in which to examine 
tipping point thresholds in relation to hierarchical depth in humans. As 
observed, we expect individual differences in the hierarchical depth of 
goal hierarchies to explain individual differences in resilience and sus
ceptibility to mental disease. Such hierarchies ultimately involve highly 
integrated self models, social models and transcendent world models. A 
temporary collapse of these models should be a common (trans
diagnostic) factor in all episodic forms of mental illness (’psychopa
thology)’. Conversely, a persistent failure of similar cortical hierarchies 
to mature properly should underlie a stagnation of personality devel
opment and the concomitant chronic risk of episodic mental illness 
(‘personality pathology’). In terms of diagnostics, monitoring scores of 
patients on these three global domains therefore seems crucial. In terms 
of prognostics, measuring change scores on these three global domains 
may help to predict treatment success and relapse rates, whereas en
tropy levels in ESM timeseries may help to predict the onset of episodic 
mental disorders (i.e. tipping points, (van de Leemput et al., 2014). In 
terms of therapeutics, promoting an optimal balance between top-down 
predictions and bottom-up belief updating can be performed by pre
scribing medication that modulates synaptic gain (e.g. antidepressants, 
antipsychotics, etcetera) or by means of transdiagnostic psychothera
peutic interventions that promote the updating of false beliefs with 
respect to self, others, and global world views (e.g. exposure and 
re-appraisal in cognitive behavioral therapy). Of course, much can be 
won by prevention strategies that discourage people from developing 
maladaptive world models in the first place, e.g. by providing children 
with a safe social environment, proper training and education. 

To summarize, we expect stress to alter (functional) connectivity in 
living systems in canonical ways, regardless of whether that involves 
single-cellular life forms of complex multicellular organisms and higher 
species. This allows for the categorization of stress-levels into discrete 
stages, each with distinct and quantifiable features (for a similar 
attempt, see Romero et al., 2009). ‘Low’ amounts of stress (prediction 
error) should be associated with low-level action–perception cycles, i.e. 
activity of short loops within the nested hierarchy and low levels of 
permutation entropy in hierarchical message passing ([0] Reflexive, 
habitual behavior, homeostatic control). This reflects the successful 
suppression of low-level prediction errors by predictive structures of low 
model complexity (short stimulus-evaluation-response loops). When 
stress levels rise to mild or moderate levels, we expect increased 
involvement of higher level generative models and behavioral policies of 
corresponding complexity that conspire to suppress rising levels of 
prediction error. This stage involves increased activity within processing 
loops of increasing length and rising levels of permutation entropy ([1] 
goal-directed behavior, allostatic control. In contrast, we expect the 
activity of higher hierarchical levels to decrease again when stress levels 
become more severe. This reflects the dissolution of higher-level goal 
states when the hierarchy is taxed to its limits as a result of hub overload 
and failure ([2] regression to homeostatic behavior, allostatic overload). 
Thus, both low [0] and high [2] stress levels should engage habitual 
rather than goal-directed forms of behavior. The final two stages involve 
an undercontrolled state of high permutation entropy (([3] critical 
slowing down, CSD), which predicts a sudden loss of functional or 
structural integrity ([4] loss of control, tipping points / decompensa
tion). All of these stages can be identified objectively (van de Leemput 
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et al., 2014; Zhu et al., 2020). Predictions with respect to (the direc
tionality of) network connections and levels of disorder in hierarchical 
message passing under different levels of stress can be tested using the 
quantitative measures described above. 

An interesting approach would be to simulate changes in the per
formance of hierarchical control systems under different levels of stress 
using artificial systems (e.g. information bottleneck systems, see below). 
Such studies would allow testing of the hypothesis that folded bow-tie 
structures with nodes that collapse as a function of node degree as a 
result of rising levels of prediction error would show a top-down collapse 
of goal hierarchies (the knots of bow ties), i.e. to produce a model of 
allostatic overload. This can be done by modeling precision as the 
weight of connections of prediction error units relative to predictive 
units. Increases in entropy measures of both hierarchical message 
passing and behavioral sequences produced by the system should then 
be predictive of tipping points / loss of homeostasis and serve as a 
universal model for stagnant growth, disease, or death. Such studies 
would be a safe way to study the tipping point thresholds as a function of 
hierarchical depth, providing a generic model for individual differences 
in fitness. Incidentally, such a model would provide a mechanistic ac
count of the workings of natural selection on organisms that lack 
adaptive capacity and, thus, link to studies of evolutionary biology. 

Finally, it would be interesting to examine to what degree the 

structure of human phenotypical networks (inner experience and overt 
behavior) echoes the physical structure of living network systems as 
shown in Figs. 6 and 8. Phenotypical networks indeed show signs of 
small-worldness and nested modular hierarchy (part–whole relation
ships), as well as statistical dependencies between items that can be 
explained by physical network architectures capable of hierarchical 
Bayesian inference (e.g. Goekoop and Goekoop, 2014). A similar 
approach can be tried in social networks. Here, agent-based simulations 
could aid in understanding patterns of social interaction at the local 
level (e.g. mutual dependence or social conflict) as well as global phe
nomena such as innovation and rumor diffusion, voting, migration, 
strikes, riot behavior, economic slowdown and warfare. 

5.3. Modeling organisms: a unified theoretical framework 

One of the most interesting features of living systems is that they 
follow scale-independent rules of network structure and function that 
apply to all organisms. Such universality means that organisms of any 
type can be modeled using a minimum set of building blocks under a 
common theoretical framework. Scholars will not have to make unique 
models for each organism separately, nor for each level of observation 
within the organism (e.g. genetic, cellular, systems level, or social). 
Instead, organisms can be described in terms of a limited set of network 

Fig. 10. Scale-Invariant Features in Organisms Allow for Efficient Modeling. 
Note: The scale invariance of biological networks proves useful for modeling organisms. The same network motifs appear at different scale levels of organization, 
where they support similar functions. For example, red squares indicate the same structural network motif (a folded bow-tie motif) at different spatial scale levels of 
observation. Modeling organisms would only require knowledge of the number, positions and scale levels of a particular type of motif within an organism, allowing 
for significant parsimony of description (i.e. organisms can be ‘compressed’ and ‘decompressed’). The fractal-like structure of biological networks means that or
ganisms can be reduced to single feedforward loops at the highest spatial scale level of observation (the level of the individual organism) without losing much 
information. See text for further details. 
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motifs (Araujo and Liotta, 2018), allowing for compression of datasets. 
Additionally, scale invariance means that organisms can be modeled 
either in all their intricate detail (i.e. the full hierarchy of part-whole 
relationships) or rather more grossly, as a few global motifs that 
together perform some global functions, without losing too much in
formation (Fig. 10). Such multilevel ‘coarse graining’ techniques have 
been shown to be successful in simulating organismic behavior (Derbal, 
2013). Here, we show that organisms can be grossly modeled as a giant 
predictive feed forward loop (FFL; section 3.3), which produces output 
that provides an update on these predictions via the environment (active 
inference). 

5.4. How biology may inform machine learning 

So far, we have discussed how artificial intelligence can help us to 
understand biological networks in terms of hierarchical Bayesian control 
systems. Conversely, one may examine how biological systems may 
inform computer models of hierarchical control systems. For instance, 
deep networks usually start out with random connections that change 
after learning. Eventually, the idea of learning is to connect some input 
(e.g. a series of pixels that together form the shape of a cat) to a desired 
output (say, the succession of letters (C-A-T) in a non-random fashion by 
means of a hierarchically organized throughput area that makes these 
connections. We have seen that such associations are significantly 
improved when allowing for a hierarchical structure of input, 
throughput and output modules (Section 2.2). Since non-randomly 
wired small world networks form spontaneously when optimizing the 
flow of energy through random networks (Jarman et al., 2017), we 
predict that present-day hierarchical deep networks, when performing 
at optimal efficiency, must have approached a scale invariant, small 
world network structure. Currently, we know of no studies that have 
examined existing deep networks directly for small-worldness. A recent 
study found that fitting a deep network with small world network ar
chitecture prior to learning significantly enhanced its performance, 
thanks to the rapid convergence of microstates onto hub states (Jav
aheripi et al., 2019). A further improvement could be made by fitting 
deep networks with bottleneck (bow-tie) structure prior to learning 
(Shwartz-Ziv and Tishby, 2017). Several studies show that information 
bottlenecks increase the performance of hierarchical (deep) networks by 
allowing their higher hierarchical levels to perform some kind of 
compression and generalization of events that take place at lower levels 
(Hafez-Kolahi and Kasaei, 2019; Shwartz-Ziv and Tishby, 2017). Such 
performance increases appear to be related to phylogenetic learning 
(evolution) rather than ontogenetic learning (within-lifespan individual 
development), hence their introduction may significantly boost system 
performance by skipping a generic (phylogenetic) learning process, 
allowing the system to directly proceed with task-relevant (ontogenetic) 
learning instead. Information bottlenecks may also prove crucial in 
studies of hierarchical Bayesian inference (interestingly, the objective 
function used for the free energy principle, i.e. variational free energy, 
can be cast in terms of compressing and minimum description lengths 
(Friston, 2019a; MacKay, 1995, 2003; Sun et al., 2011; Wallace and 
Dowe, 1999). Given the ubiquitous presence of small world and bottle
neck networks in nature, we expect that such features will soon be 
detected in hierarchical deep learning systems and that the formation of 
such structures correlates positively with the performance of such sys
tems. Indeed, the very structure of deep networks necessarily entails a 
kind of bowtie structure. This is most evident in things like variational 
autoencoders, which arguably represent the state-of-the-art in deep 
learning (Zhao et al., 2017). These are deep networks with a bow-tie like 
architecture that follow the rules of hierarchical Bayesian inference, 
with a converging input part that is called an ‘encoder’ and a divergent 
output part that is called a ‘decoder’. Behavior is generated by decoding 
abstract states into hierarchical output sequences in a top-down manner. 
We predict that such structures will show biologically plausible behavior 
when folded to connect input and output structures at corresponding 

hierarchical levels (Safron, 2020) and when accounting for hub overload 
and failure during stress (Stam, 2014). Overall, it is interesting to note 
that the network architectures that predominate in machine learning (e. 
g. deep convolution neural networks) conform almost exactly to the 
principles that we have been exposing, i.e. they have an explicit hier
archical structure with a certain kind of sparsity, following rules of 
predictive coding and hierarchical Bayesian inference. 

As a final remark, biological systems may inspire machine learning 
techniques with respect to the generic response they show to severe 
stress and the overtaxing of their hierarchies of control. Lowering inte
grative control at the cost of contextual integration may be an answer in 
situations that require rapid decisions within the context of limited 
energy supply (e.g. battery powered devices). This may speed up system 
performance in dire situations, e.g. when used in military situations, self 
driving cars or policing. The prospect of ‘stressed robots’ that weigh 
selfish and selfless goals may not seem very appealing, but may ulti
mately prove to be of significant value. For instance, robots may be 
programmed to never abandon higher level (normative) goals over 
lower level (self-centered or social) goals in relevant situations, effec
tively causing them to remain morally just and impartial, or to self- 
sacrifice (fail for the global good) under stressful conditions. 

5.5. Conclusion 

To conclude, we have examined how biological network systems 
have structural features that allow them to function as hierarchical 
Bayesian control systems. Such systems have generic ways of producing 
behavior and responding to stress, which may prove useful in under
standing animal as well as human behavior. Biology on the other hand 
keeps on inspiring man-made systems, for which we have made some 
suggestions. A list of techniques has been presented that can be used to 
test the hypotheses presented in this paper. 
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