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Abstract

The discipline of artificial intelligence originally aimed to replicate human-level intelligence in a machine. It could
be argued that the best way to replicate the behavior of a system is to emulate the mechanisms producing this
behavior. But what mechanisms exactly should we replicate, the brain or the cognitive faculties more directly? Early
symbol-based Al systems paid little regard to neuroscience and were rather successful. However, since the 1980s,
artificial neural networks has become a powerful Al technique that shows remarkable resemblance to what we know
about the human brain. In this chapter, we will highlight some of the similarities and differences between artificial
and human intelligence, the history of their interconnection, what they both excel at, and what the future may hold
for artificial general intelligence.

Introduction

Humans are still considered to be smarter than machines, despite impressive progress in the field of
artificial intelligence, with computers outperforming humans on several benchmark tasks. The big
question that unites the fields of artificial intelligence and cognitive science remains unsolved: what
makes humans so intelligent? It is surely not unreasonable to think that whatever it is that makes humans
intelligent could be implemented in a computer system to make it as intelligent as a human. Unfortunately,
we do not have a complete understanding yet of the origins of human intelligence, but we do have some
idea based on both empirical evidence as well as some educated guesses.

First of all, we know that our cognitive faculties are physically implemented in the brain. Thisis a
cantaloupe-sized mass of 1300 grams consisting of 10'" nerve cells called neurons, which are intercon-
nected by around 10'° synapses. Neurons can transmit signals to other neurons, which can then send
that signal to other neurons, et cetera, generating interneuronal communication. Information can then
propagate through this network of interconnected neurons.! Simplified, a neuron receives a signal from
other neurons, integrates these signals, and sends a signal when the sum of its received signals reaches a
certain threshold. Depending on the strength of the synapse, such a signal can excite or inhibit other neu-
rons. Computationally, what neurons do can be seen as a floating-point operation?, of which the human
brain can carry out 10' per second.® The highest performing modern (as of 2021) personal computers
can perform around 10'* floating-point operations per second, which makes them four magnitudes of
order slower than a human brain. As such, whatever the brain computationally does in one minute could
be performed on such a computer in a week. But, impressive as this may be, is it simply the speed of

Although it should be noted that it is unknown how anything but the most trivial information (e.g. stimulus intensity) is represented
by neurons.

Simplified, a floating-point operation (FLOP) is an arithmetic operation (such as addition or multiplication) involving two real
numbers. This is arguably what neurons and synapses do as well: multiplying incoming activation with the strength of the synapse.
Every synapse carrying out floating-point operations at 1000 Hz; McClelland 2009, Zador 2019.



floating-point operations that enables the human brain to produce intelligence? The fact that we do not
actually know how to simulate a minute’s worth of full human cognition, even given all the computing
power in the world, suggests that we may need to understand more than mere floating-point operations
in order to understand human intelligence.

But, even if we start with them, floating-point operations do not exist in a vacuum, they require
operands. What exactly are the operands of the computations that produce the human mind? On a neural
level they may be the activation values of neurons, but the relationship between neural activity and the
mind is everything but clear. To create intelligent systems, do we need to recreate the brain, the mind,
or neither? Several different schools of thought have dominated the field of artificial intelligence and
cognitive science over the past century, but for the purpose of this chapter we will divide them roughly
into symbolic and subsymbolic approaches of intelligence.

The beginnings of artificial intelligence and cognitive science

The origins of modern artificial intelligence cannot be seen separate from the origins of the field of cogni-
tive science, which emerged from the ashes of the then-dominant psychological school of behaviorism.*
In what is now known as the cognitive revolution, emphasis shifted from studying behavior to studying
the computations producing it. Moving beyond stimulus-response associations, concepts like reasoning
and representations became the topic of study for the new fields of cognitive science and cognitive
psychology. This new generation of researchers used models of mental processes to study the mind and
behavior. Around the same time, a group of researchers interested in the idea of implementing intelli-
gence in machines organized what is now known as the birthplace of the field of artificial intelligence: the
Dartmouth Conference of 1956.° Although many topics were discussed in this two-month(!) meeting, one
of the most direct outcomes of the Dartmouth Conference was the rise of symbolic artificial intelligence.

Symbolic Al and physical symbol systems

Allen Newell and Herbert Simon, two cognitive scientists who participated in the Dartmouth Conference,
suggested that human intelligence is essentially symbol manipulation. And if humans are intelligent
by virtue of their symbolic representation and manipulation, it could perhaps be possible to endow
computer systems with this same capability. This position is now known as the physical symbol system
hypothesis and was strengthened by the success of their computer programs Logic Theorist’ and General
Problem Solver.® Using manipulation of high-level symbols, the first could reason, and generate proofs
for mathematical theorems, even improving on some proofs found by humans, while the second was a
more general program to solve logical problems.

Newell and Simon’s General Problem Solver would use means-end analysis to solve problems similar
to how humans were thought to solve them, a paradigm now known as reasoning as search. How exactly
humans solve unfamiliar problems was not well known, but Newell and Simon hypothesized that means-
end analysis would be involved. Accordingly, they implemented this assumed human problem-solving
technique into a computer system. Given a well-defined problem, it would cast itin terms of an initial state,
a goal state, and operators that define the transition between two states. It would then solve the problem

At least, then-dominant in the United States. Behaviorism posits that psychology should limit itself to observing and predicting
behavior, in contrast to convictions and beliefs, as only behavior could be a source of objective evidence. This behavior was regarded
as the learned product of the interactions between an organism and its environment.

It could be argued that Chomsky’s (1959) Review of B. F. Skinner’s Verbal Behavior kickstarted the cognitive revolution. In this
critique, Chomsky argued against the concept of language as purely learned behavior. For example, children are able to understand
sentences they have never been exposed to before.

Attendees included Marvin Minsky, Claude Shannon, Allen Newell, Herbert Simon, W. Ross Ashby, and Ray Solomonoff, researchers
who would become known as the founders of the field.

Newell et al 1957.

Newell and Simon 1961.
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using heuristic search, narrowing the search space to make the search tractable.” First, it would evaluate
the difference between the current state and the goal state. Second, it would find a transformation leading
to a subgoal that reduces the difference between the current state and the goal state. It would then check
if the transformation can be applied to the current state, and if not, would find another transformation.
By iteratively transforming the symbolic representation of the initial state, the program could then find
a solution to the problem. Newell and Simon demonstrated that their program could solve the Towers
of Hanoi and missionaries and cannibals problems,'? although it could be applied to any well-defined
problem. Although immensely influential in cognitive psychology, some argue that the General Problem
Solver failed as a psychological theory or as an explanation of human problem solving as the idea that
problem solving relies on a general mechanism does not seem to hold.!! Concepts from the General
Problem Solver have now been incorporated in the more general Soar cognitive architecture.'?

In the 1970s, progress was made in the field of expert systems. These systems attempted to implement
the knowledge and decision making of human experts. In line with the physical symbol system hypothesis,
knowledge would be represented symbolically in a knowledge base and reasoned with using an inference
engine. Perhaps the most well-known example is MYCIN, an expert system developed in the early 1970s
at Stanford. With a knowledge base of around 600 rules, it was designed to diagnose blood infections
using a physician as an intermediate. The physician would be presented with a series of questions®® and
the system would then produce a list of possible diagnoses with certainty factors. Although the quality of
MYCIN’s prescribed antimicrobials was as least as good as human faculty specialists at Stanford,'* the
system was never used in medical practice. Ethical and legal issues surrounding liability and reliability of
such a novel technique in medical practice, most of which have not been solved as of yet, detracted from
its usefulness.

To develop an expert system, knowledge from human experts needs to be extracted and represented
in its knowledge base and inference engine, a process known as knowledge acquisition. In other words, it
requires the transfer of symbolic knowledge from the human mind to an artificial system. In its earliest
form, this would consist of finding a group of domain experts and interview them to try to represent their
most relevant knowledge, which itself was acquired from textbooks and other experts in a system of rules
and symbols.'®> Modern approaches to knowledge acquisition include automated analysis of natural
language in e.g. user manuals or textbooks and storing the acquired knowledge in (general-purpose)
ontologies. As such, the principle of transferring symbolic knowledge from humans to artificial systems
has not changed, but the method of this transfer has largely been automated.

Modern ontologies play an important role in allowing robots to perform actions in real-world environ-
ments. One of the problems in creating general-purpose robots is that the tasks they should perform
are often greatly underspecified.'® For example, a cooking robot trying to follow a recipe may encounter
the instruction to “add a cup of water to the pan.” While this is trivial for any human to follow, it requires
knowledge about where to find water, where to get a cup from, and not to add the cup itself to the pan but
merely its contents. This commonsense knowledge that is so self-evident to humans is not usually avail-
able to robots. However, online accessible ontologies such as Cyc may help by structuring commonsense
knowledge in a symbolic, structured format available to robots and other computer systems.*’

9 Avoiding exhaustive search that would be computationally prohibitive for anything but very small state spaces.

10 Or any of the river-crossing puzzles such as the related jealous husbands problem or the identical foxes and chickens problem.

11 Ohlsson 2012.

12 Laird 2012.

13 E.g. “What is the form of the individual organisms (e.g. lancet-shaped for cocci, fusiform for rods, etc.)?” from Buchanan and

Shortliffe 1984.

14 Yuetal 1979.

15 Russell and Norvig 2010.
16 de Kleijn et al 2014.

17 Lenat et al 1990.
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Artificial neural networks

However powerful symbolic Al had shown to be, by the end of the 1960s it became clear that there
were some forms of human intelligence that it could not even begin to replicate. Interestingly, these
seemed to be skills that human would perform effortlessly, such as object recognition, walking, or having
a conversation.'® As psychologist Steven Pinker noted: “The main lesson of thirty-five years of Al research
is that the hard problems are easy and the easy problems are hard.”'° The tasks that Al research had
concentrated on thus far were tasks that humans found particularly difficult, such as logic, symbolic
algebra, and playing chess, which were seen as good indicators of intelligence. It was thought that as
those problems were solved, the “easy” problems like vision would be solvable as well, an optimism
well-illustrated by Herbert Simon’s 1960 prediction that “machines will be capable, within twenty years,
of doing any work a man can do.”?° As we now know, this would prove to be more difficult than expected.
In 1973, reporting to the British Science Research Council, mathematician James Lighthill criticized the
progress made in the field of Al in what is now known as the Lighthill report.”* Specifically, the issue of
combinatorial explosion in real-world problem solving was mentioned. Many of the problems that Al
systems of the time were solvable for small toy problems, but turned out to be computationally intractable
when scaled to real-world problems.?? Also, it was unclear how problems such as vision, motor control,
and noisy measurements such as encountered in robotics would be represented symbolically.

Some of these more difficult problems seemed to be particularly well-suited for another type of Al
architecture known as connectionism, or artificial neural networks (ANNs). In these systems, information
is not represented symbolically, but subsymbolically as activation values distributed over a network of
elementary units with no intrinsic meaning.”® Similar to neurons, which receive activity in the form of
electrochemical signals through their dendrites and send activity along their axons, these units receive
activation from other units, and send activation as a function of their input activation. Such networks
are parameterized by the weights of the connections between the units and their activation functions,
comparable to synapse strength and activation thresholds in the human brain. Although research into
the mathematical modeling of neurons and their computational capability dates back to the 1940s when
neuroscientists Warren McCulloch and Walter Pitts studied the implementation of logical functions in
artificial neurons, it took almost half a century for artificial neural networks to take off.?* In the 1980s,
David Rumelhart and James McClelland published their now-standard collection Parallel Distributed
Processing, in which they showed that artificial neural network models could account for a range of
psychological phenomena, suggesting that the computational techniques they use are similar in nature.
Such a network of artificial neurons can be used as a classifier, where it can take an input (such as an
image), process it, and return an output such as a category label (is it a dog or a cat?). However, in order
for it to do so, it needs to be trained. Most often, training such a neural network to classify dogs and cats
is done using supervised learning, in which a large, correctly labeled dataset is presented to the network
with a learning algorithm adjusting the network weights until it is able to correctly classify novel inputs.

At the start of the 2010s, deep neural networks started to reach or even surpass human performance

18 The observation that computers perform tasks that humans find difficult such as reasoning or playing chess very quickly and
accurately, but have great difficulty performing tasks that humans find trivial such as walking or face recognition, is known as
Moravec’s paradox. Moravec (1990) argues that the difficulty for a computer system to solve a problem is proportional to the time
evolution has had to optimize solving it in humans.

19 Pinker 1994, p 192.

20 Simon 1960, p 38.

21 Lighthill 1973.

22 These problems turned out to be most likely solvable only in exponential time where the required time to solve grows exponentially
with input size, which is only acceptable for very small input sizes such as the toy problems Al was concerned with.

23 Although it could be argued that localist representations of the input and output layers of some connectionist models are symbolic
in nature.

24 This is not to say that no important discoveries were made during the period in between, as important research into the power and
limitations of neural networks was done by e.g. Minsky and Papert at MIT, and Rosenblatt at Cornell.
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in image classification tasks, the start of a deep learning revolution.?> Using a deep convolutional neural
network and a training set of almost 40,000 images of 43 different German road signs,’® researchers
demonstrated a recognition accuracy of 99.5%, where humans scored 98.8%. At the same time, the same
researchers showed 99.8% accuracy on the benchmark MNIST handwritten digit recognition dataset,
which is near-human performance.’” More recently, an ensemble of three deep neural networks trained
to predict breast cancer from mammograms exceeded the average performance of six board certified
radiologists. In another study, the researchers showed that in a so-called double-reading process, a
process used in the UK for screening mammograms using two independent interpretations, the second
reader’s workload can be reduced by 88% without compromising the standard of care.?® With these
artificial neural networks reaching or even surpassing human-like performance, looking at the similarities
between this type of artificial intelligence and its biological counterpart becomes even more interesting.

Human brains are not just 10" neurons randomly crammed together in a skull, they are structured
into a specific topology with some groups of neurons more densely connected than others. As mentioned
earlier, the biological inspiration for artificial neural networks arose from the concept of a network
of elementary units (neurons in humans), connected through weighted links (synapses in humans).
These units are arranged in layers: an input layer representing the input to the network, an output
layer representing the output, and one or more hidden layers. But determining how many layers we
actually need to solve a certain problem is an art as well as a science. From a science perspective,
some fundamental limitations have become clear. It was shown in 1969 that at least one hidden layer is
necessary to learn some complex patterns, and sufficient to learn arbitrarily complex patterns.?’ However,
the deep learning revolution that accompanied an impressive increase in the performance of artificial
neural networks showed that adding more layers to a network can increase its performance. In these
deep networks, higher layers represent more abstract features such as faces or letters, while lower layers
represent more raw features such as edges or orientation. A similar architecture can be seen in the
human visual cortex, where neurons in lower layers specifically respond to location and orientation while
neurons in higher layers respond to faces or objects. In fact, the representations learned by deep networks
show similarities to the representations developed in the primate visual system.** Such a hierarchical
topology greatly increases representational power for a given number of parameters, both in biological
and artificial neural networks.

When training ANNs using supervised learning, network weights are usually optimized using a tech-
nique known as backpropagation. The backpropagation algorithm computes the gradient of the error
function®! with respect to the network weights at the output layer, which is then propagated back to
previous layers. This gradient information can then be used to adjust network weights, e.g. using gradient
descent. While a powerful technique for supervised learning of network weights, as a model of brain
function backpropagation was quickly criticized for being biologically implausible.*? Biological neurons
do not seem capable of transmitting information about the error gradient backwards along the axon, or
any information at all for that matter. This is of course not to say that there are no return pathways in
the brain, as there clearly are, but units or pathways that compare the output of a neuron to its required

25 The deep in deep learning refers to the number of layers (depth) in an artificial neural network, see below for an explanation.
26 The German Traffic Sign Recognition Benchmark (GTSRB) dataset containing more than 50,000 traffic sign images was used;

Stallkamp et al 2011.

27 Ciresan et al 2012.
28 McKinney et al 2020.
29 More specifically, it was shown that learning non-linearly separable functions such as XOR requires at least one hidden layer, and

that this is enough to approximate any continuous function; Minsky and Papert 1969, Cybenko 1989.

30 Yamins and DiCarlo 2016.
31 The error function defines the error between the actual output of the network and the required output of the network for a set of

input-output pairs. For classification problems (a popular use of ANNs) cross entropy is often used.

32 And not only backpropagation, but the entire endeavor of connectionist modeling, see e.g. Crick 1989 for a scathing commentary.
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output and propagate it across layers to cause changes in synaptic strength have not been discovered.**
Not only is the biological plausibility of backpropagation questionable, the entire supervised learning
process could be argued to be implausible. Humans are simply not provided with thousands of correctly
labeled training data®* for every object or concept they encounter, something that is required for the
successful training of a deep network. Instead, humans seem to learn through trial-and-error, which
is perhaps better modeled through a reinforcement learning paradigm. Modern deep reinforcement
learning models use deep neural networks to approximate the expected outcome of possible actions to
be taken, with impressive results.

Inthe animal visual cortex, neurons respond to the activation of other neuronsin a specific area, known
as the receptive field.>> Convolutional neural networks are inspired by architecture of the animal visual
cortex. Whereas in traditional artificial neural networks the units in each layer are connected to all the
unitsin the previous layer,*® in convolutional neural networks the units in a layer are connected to a subset
of units in the previous layer. This greatly reduces the number of parameters of the network, reducing
overfitting,* allowing for deeper networks, and reducing training time. Not only are convolutional neural
networks successful classifiers, they can predict large-scale activation of human brain regions and the
firing patterns of neurons, suggesting similar mechanisms and computational principles between the
two.*8

While deeper networks are more powerful, they are also harder to train and can suffer from the
vanishing gradient problem.>® Residual neural networks (ResNets) are inspired by the architecture of
pyramidal cells in the cerebral cortex. In fully connected artificial neural networks, all units in a layer are
connected to all units in the next layer. As such, there are no connections between units in layer x and
layer x + 2 or layer x + 3. In a residual neural network, these connections are allowed, effectively skipping
one or more layers when propagating activation (see Figure 1). It has been shown that for extremely
deep networks, residual neural networks are easier to train, allow more layers, and perform better than
non-residual networks given a specific network complexity.*’

As said earlier in this section, artificial neural networks can now outperform human intelligence on
certain specific tasks using techniques inspired by neurological principles. But even the types of networks
that can outperform humans appear to have some idiosyncrasies that are remarkably different from
human performance. So-called adversarial examples are inputs to a classifier that are slightly modified
so that they are misclassified even though a human observer may see no difference.*! It has recently
been shown that the modification can be as small as a single pixel,*> and does not have to be directly
applied to the input data directly, but can also be applied to a real-world object that indirectly serves
as an input, such as an object that is photographed.** These misclassifications can be quite stunning

33 It should be noted that the biological plausibility of backpropagation is controversial, and by no means a solved question. For
example, there is evidence to suggest that when an action potential travels through an axon, it can cause a retrograde signal being
sent to the presynaptic neuron through the dendrites. However, this is still far from actually propagating an error signal back across
several neurons. See e.g. Stuart et al 1997, Bogacz et al 2000.

34 Training data in supervised learning consists of an input (e.g. a picture of a cat) and a desired output (e.g. the label “cat”).

35 Hubel and Wiesel 1959.

36 This is referred to as a fully connected network.

37 Overfitting refers to the phenomenon where a network is trained to the point in which it can correctly classify the training data it
has seen, without being able to generalize to novel instances. For example, it would be able to correctly classify its 10,000 training
images as a cat, but fails to correctly classify a new picture of a cat.

38 Zhou and Firestone 2019.

39 The vanishing gradient problem occurs when the gradient of the error function becomes so small that network weights are no
longer being updated. This is more likely to happen with very deep networks as the gradient decreases exponentially with the
number of layers.

40 He et al 2016.

41 Although it should be noted that there are adversarial examples that fool both time-limited humans and computers, see e.g. Elsayed
2018; Goodfellow et al 2015.

42 Su et al 2019.

43 Kurakin et al 2017.
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Figure 1. A regular deep neural network (a) compared to a residual neural network (b). Note that in (b) there are
connections between units in layer H' and H3, effectively skipping layer H2.

to a human observer, for instance when a clear image of an elephant is being classified as a baseball,
or a car as a milk can. Although interesting from a machine learning perspective, these findings are
perhaps even more interesting from the perspective of human intelligence. Adversarial examples are
often indistinguishable from their originals to humans, but are able to fool deep networks causing them
to misclassify them. And not only that, deep networks assign high confidence ratings to their incorrect
classification. This phenomenon casts doubt on the alleged similarity between deep neural networks and
human object recognition mechanisms. However, some authors** have argued that these differences may
not be caused by a qualitative difference between artificial and biological object recognition mechanisms
and computational principles, but by the limitations of the human visual system which cannot perceive
the perturbations used in adversarial examples. In other words, the existence of adversarial examples may
not tell us anything about the high-level mechanisms of object recognition, but the low-level architecture
of the visual system.*”> Perhaps the difference between human and computer intelligence in object
recognition can be best illustrated with an analogy.*® Human cognition allows us to distinguish between
objects appearing to be like something and objects being something, for instance when distinguishing
between a cloud that looks like a dog and an actual dog. Deep networks have no such luxury, and instead
are forced to pick the label that is most likely.

Conclusion

Thefields of artificial intelligence and the study of human intelligence have been intertwined, and devoting
only one book chapter can hardly be enough. We limited ourselves here to two central forms of knowledge
representation, symbolic and subsymbolic. The first approach represents knowledge symbolically, and

44 For example Zhou and Firestone 2019.
45 Although any evidence that the low-level architecture of the visual system is different for humans and computers should not come

as a surprise; see Zhou and Firestone 2019.

46 Analogy taken from Zhou and Firestone 2019.
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reasons using these symbols. Problem solving can be seen as symbol manipulation, according to this
view. And knowing what we know about human cognition, it seems that at least part of our reasoning is
symbolic in nature, not to speak of human symbolic communication.*” On the other hand, it is also clear
that many of the tasks we perform, such as vision and walking do not lend themselves well to symbolic
representation. Artificial neural networks have found inspiration in the biological brain in many forms,
not only the function of individual neurons, but also topological constraints such as deep, convolutional,
and residual neural networks.

The idea of artificial neural networks is appealing. We know that the human brain produces some very
intelligent behavior, so trying to emulate its mechanisms seems like an appropriate course of action. But
opinions differ on whether brain-inspired artificial intelligence holds the key to creating truly intelligent
artificial systems. It could be that although neuroscience has inspired ANN research, we have already
reached the limits of what can be learned from brain research.*® Although there are many commonalities
between human intelligence and its artificial implementations, the one dimension on which they differ
greatly is domain-specificity. While expert systems and deep networks can show better-than-human
performance on several tasks, these remain very specific and are limited to the tasks these systems
were designed or trained for. Although progress has been made in transfer learning and other areas,
generalizability remains a puzzle and these developments have not yet been scaled to true out-of-domain
performance. A computer system implementing artificial general intelligence® remains elusive, and
although it has been the topic of research for decades, no big leaps in progress have been reported.
The question remains whether human-level artificial intelligence—if ever achieved—will be the result of
incremental progress on deep supervised, unsupervised and reinforcement learning, or that a paradigm
shift is needed for artificial general intelligence. Meanwhile, the mechanisms causing human intelligence
are not any less elusive. It seems that the one thing that is absolutely clear is that both the fields of
artificial intelligence and cognitive science have a lot of work ahead of them. With the already impressive
success of biologically inspired techniques, it is inevitable that new discoveries about the human brain
and mind will further advance the state of artificial intelligence.
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